日夏养花网

您好,欢迎访问日夏养花网,我们的网址是:http://www.rixia.cc

rna的生物学功能有什么意义?

2021-07-24 18:10:13 分类:养花问答 来源: 日夏养花网 作者: 网络整理 阅读:87

rna的生物学功能有什么意义

  RNA既是信息分子,又是功能分子,归纳起来,RNA主要有以下几个方面:
1、RNA在遗传信息的翻译中起着决定的作用.
2、RNA具有重要的催化功能和其它持家功能(持家功能是批细胞(包括病毒)的基本功能,如原核生物染色体的结构RNA,噬菌体的装配RNA等).
3、RNA转录加工和修饰依赖于各类小RNA和其蛋白复合物.
4、RNA对基因表达和细胞功能具有重要的调节作用.
5、RNA在生物的进化中起着重要的作用.核酶的发现表明RNA既是信息http://www.rixia.cc分子又是功能分子,生命的起源早期可能首先出现的是RNA.

RNA有哪几种?其主要生物学功能是什么?

详细点!

RNA的种类有mRNA、tRNA、rRNA、miRNA、小分子RNA、端粒酶RNA、反义RNA、核酶、非编码RNA。

RNA主要功能是实现遗传信息在蛋白质上的表达,是遗传信息向表型转化过程中的桥梁。

RNA是以DNA的一条链为模板,以碱基互补配对原则,转录而形成的一条单链。

RNA由核糖核苷酸经磷酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤[1] ,G鸟嘌呤,C胞嘧啶,U尿嘧啶。

其中,U尿嘧啶取代了DNA中的T胸腺嘧啶而成为RNA的特征碱基。

扩展资料:

转录是指DNA的双链解开,使RNA聚合酶可依照DNA上的碱基序列合成相对应之信使RNA(mRNA)的过程.
在人体需要酵素或是蛋白质时,都会需要进行此过程,才能借由信使mRNA,将密码子带出核模外.
好让核糖体进一步的利用信使RNA(mRNA)来翻译,合成所需之蛋白质。

DNA的碱基有A(腺嘌呤)、G(鸟嘌呤)、C(胞嘧啶)、T(胸腺嘧啶),而RNA之碱基无T(胸腺嘧啶),
取而代之的是U(尿嘧啶),也就是有A(腺嘌呤)、G(鸟嘌呤)、C(胞嘧啶)、U(尿嘧啶)。

在DNA中,A与T以两条氢键连结,G与C以三条氢键连结,但RNA只有U而无T,
所以在转录时DNA上的若是A,mRNA就会是U,也就是取代原本T的位置。

参考资料来源:百度百科-RNA

答:RNA的种类:

在生物体内发现主要有三种不同的RNA分子在基因的表达过程中起重要的作用。它们是信使RNA(messengerRNA,mRNA)、转移(tranfer RNA,tRNA)、核糖体RNA(ribosomal RNA,rRNA)。RNA含有四种基本碱基,即腺嘌呤、鸟嘌呤、胞嘧啶和尿嘧啶。此外还有几十种稀有碱基。
RNA的一级结构主要是由AMP、GMP、CMP和UMP四种核糖核苷酸通过3',5'磷酸二酯键相连而成的多聚核苷酸链。天然RNA的二级结构,一般并不像DNA那样都是双螺旋结构,只有在许多区段可发生自身回折,使部分A-U、G-C碱基配对,从而形成短的不规则的螺旋区。不配对的碱基区膨出形成环,被排斥在双螺旋之外。RNA中双螺旋结构的稳定因素,也主要是碱基的堆砌力,其次才是氢键。每一段双螺旋区至少需要4~6对碱基对才能保持稳定。在不同的RNA中,双螺旋区所占比例不同。【RNA的二级结构】细胞内有三类主要的核糖核酸,即:mRNA、rRNA、tRNA。它们各有特点。在大多数细胞中RNA的含量比DNA多5~8倍。【大肠杆菌RNA的性质】

mRNA

生物的遗传信息主要贮存于DNA的碱基序列中,但DNA并不直接决定蛋白质的合成。而在真核细胞中,DNA主要贮存于细胞核中的染色体上,而蛋白质的合成场所存在于细胞质中的核糖体上,因此需要有一种中介物质,才能把DNA 上控制蛋白质合成的遗传信息传递给核糖体。现已证明,这种中介物质是一种特殊的RNA。这种RNA起着传递遗传信息的作用,因而称为信使RNA(message RNA,mRNA)。

mRNA的功能就是把DNA上的遗传信息精确无误地转录下来,然后再由mRNA的碱基顺序决定蛋白质的氨基酸顺序,完成基因表达过程中的遗传信息传递过程。在真核生物中,转录形成的前体RNA中含有大量非编码序列,大约只有25%序列经加工成为mRNA,最后翻译为蛋白质。因为这种未经加工的前体mRNA(pre-mRNA)在分子大小上差别很大,所以通常称为不均一核RNA(heterogeneous nuclear www.rixia.ccRNA,hnR日夏养花网NA)。

tRNA

如果说mRNA是合成蛋白质的蓝图,则核糖体是合成蛋白质的工厂。但是,合成蛋白质的原材料——20种氨基酸与mRNA的碱基之间缺乏特殊的亲和力。因此,必须用一种特殊的RNA——转移RNA(transfer RNA,tRNA)把氨基酸搬运到核糖体上,tRNA能根据mRNA的遗传密码依次准确地将它携带的氨基酸连结起来形成多肽链。每种氨基酸可与1-4种tRNA相结合,现在已知的tRNA的种类在40 种以上。

tRNA是分子最小的RNA,其分子量平均约为27000(25000-30000),由70到90个核苷酸组成。而且具有稀有碱基的特点,稀有碱基除假尿嘧啶核苷与次黄嘌呤核苷外,主要是甲基化了的嘌呤和嘧啶。这类稀有碱基一般是在转录后,经过特殊的修饰而成的。

1969年以来,研究了来自各种不同生物,:如酵母、大肠杆菌、小麦、鼠等十几种tRNA的结构,证明它们的碱基序列都能折叠成三叶草形二级结构(图3-23),而且都具有如下的共性:

① 5’末端具有G(大部分)或C。

② 3’末端都以ACC的顺序终结。

③ 有一个富有鸟嘌呤的环。

④ 有一个反密码子环,在这一环的顶端有三个暴露的碱基,称为反密码子(anticodon).反密码子可以与mRNA链上互补的密码子配对。

⑤ 有一个胸腺嘧啶环。

rRNA

核糖体RNA(ribosomal RNA,rRNA)是组成核糖体的主要成分。核糖体是合成蛋白质的工厂。在大肠杆菌中,rRNA量占细胞总RNA量的75%-85%,而tRNA占15%,mRNA仅占3-5%。

rRNA一般与核糖体蛋白质结合在一起,形成核糖体(ribosome),如果把rRNA从核糖体上除掉,核糖体的结构就会发生塌陷。原核生物的核糖体所含的rRNA有5S、16S及23S三种。S为沉降系数(sedimentation coefficient),当用超速离心测定一个粒子的沉淀速度时,此速度与粒子的大小直径成比例。5S含有120个核苷酸,16S含有1540个核苷酸,而23S含有2900个核苷酸。而真核生物有4种rRNA,它们分子大小分别是5S、5.8S、18S和28S,分别具有大约120、160、1900和4700个核苷酸。

rRNA是单链,它包含不等量的A与U、G与C,但是有广泛的双链区域。在双链区,碱基因氢键相连,表现为发夹式螺旋。

rRNA在蛋白质合成中的功能尚未完全明了。但16 S的rRNA3’端有一段核苷酸序列与mRNA的前导序列是互补的,这可能有助于mRNA与核糖体的结合。

snRNA

除了上述三种主要的RNA外,细胞内还有小核RNA(small nuclearRNA,snRNA)。它是真核生物转录后加工过程中RNA剪接体(spilceosome)的主要成分。现在发现有五种snRNA,其长度在哺乳动物中约为10www.rixia.cc0-215个核苷酸。snRNA一直存在于细胞核中,与40种左右的核内蛋白质共同组成RNA剪接体,在RNA转录后加工中起重要作用。另外,还有端体酶RNA(telomeraseRNA),它与染色体末端的复制有关;以及反义RNA(antisenseRNA),它参与基因表达的调控。

上述各种RNA分子均为转录的产物,mRNA最后翻译为蛋白质,而rRNA、tRNA及snRNA等并不携带翻译为蛋白质的信息,其终产物就是RNA。
1.hnRNA,核内不均一RNA。这个RNA就是基因转录完的mRNA的前体,包括内含子序列,然后在剪接体的作用下5端加帽,3端加polyA,剪切掉内含子变成成熟的mRNA以后再转运出核,没有经过完整加工的hnRNA是不会被转运出核外的。
2.snRNA,核内小分子RNA,参与mRNA加工,剪接和成熟。
3.snoRNA,核仁小分子RNA,负责rRNA加工(切割和修饰)。
4.端粒酶RNA,是染色体端粒的RNA序列,在具有端粒酶活性的细胞内,它的任务是作为反转录的模板然后加在端粒的末端以解决染色体因复制而变短的问题,这种酶在大多数细胞里是没有活性的,在某些肿瘤细胞,转化细胞,干细胞以及生殖细胞里活性较高。
5.SRP RNA信号识别颗粒-RNA:实际上它是和六个多肽结合在一起行使功能的,这个核糖蛋白主要负责终止mRNA的翻译,同时它还能和内质网(ER)上的停泊蛋白结合使结合了mRNA的定位在内质网上,这个RNA的功能现在俺也不知道,得去看看文献呵呵。
6tmRNA,这种RNA比较特殊,兼具了mRNA和tRNA的特点。在细胞中参与一种特殊的翻译反应,即反式翻译反应。
7.scRNA(细胞质小分子RNA),功能目前不知道。
8.dsRNA,双链RNA,主要在RNAi中起作用。
RNA主要分三类,即tRNA(转运RNA), rRNA(核糖体RNA), mRNA(信使RNA)。
mRNA是合成蛋白质的模板,内容按照细胞核中的DNA所转录;
tRNA是mRNA上碱基序列(即遗传密码子)的识别者和氨基酸的转运者;
rRNA是组成核糖体的组分,是蛋白质合成的工作场所。

RNA的种类及其生物学功能

类型:mRNA、tRNA和rRNA;hnRNA、snRNA、miRNA、iRNA等。
相同点:都是通过3′,5′-磷酸二酯键连接而成的单链多聚核糖核酸。
不同点
mRNA:携带从DNA编码链得到的遗传信息,并以三联体读码方式指导蛋白质生物合成的长链RNA,由编码区、上游的5′非编码区和下游的3′非编码区组成。约占细胞RNA总量的3%~5%。真核生物mRNA的5′端带有7-甲基鸟苷-5′-三磷酸的帽子结构和3′端含多腺苷酸的尾巴。
tRNA:通过单链自身回折成三叶草形状,它由3个环,即D环〔因该处二氢尿苷酸(D)含量高〕、反密码环(该环中部为反密码子)和TC环〔因绝大多数tRNA在该处含胸苷酸(T)、假尿苷酸()、胞苷酸(C)顺序〕,四个茎,即D茎(与D环联接的茎)、反密码茎(与反密码环联接)、TC茎(与 TC环联接)和氨基酸接受茎〔也叫CCA茎,因所有tRNA的分子末端均含胞苷酸(C)、胞苷酸(C)、腺苷酸(A)顺序, CCA是连接氨基酸所不可缺少的〕,以及位于反密码茎与TC茎之间的可变臂构成。三级结构呈“L”状。
rRNA:rRNA的分子量较大,结构相当复杂,目前虽已测出不少rRNA分子的一级结构,但对其二级、三级结构及其功能的研究还需进一步的深入。rRNA与核糖体蛋白结合成核糖体。真核生物核糖体中通常含28S、18S、5.8S和5S 四种rRNA;原核生物中则含23S、16S和5S 三种rRNA。
1、mRNA(信使RNA):蛋白质翻译的模版
2、rRNA(核糖体RNA):核糖体的组成成分
3、tRNA(转运RjkkbaMNA):转运氨基酸到核糖体合成蛋白质
4、RNA类的酶:起催化作用
RNA主要分三类,即tRNA(转运RNA), rRNA(核糖体RNA), mRNA(信使RNA)。mRNA是合成蛋白质的模板,内容按照细胞核中的DNA所转录;tRNA是mRNA上碱基序列(即遗传密码子)的识别者和氨基酸的转运者;rRNA是组成核糖体的组分,是蛋白质合成的工作场所
mRNA(信使RNA);传递遗传信息
tRNA(转运RNA);转运氨基酸,合成蛋白质
rRNA(核糖体RNA);核糖体的组成成分

什么是rna编辑?其生物学意义是什么

核糖核酸(缩写为RNA,即RibonucleicAcid),存在于生物细胞以及部分病毒、类病毒中的遗传信息载体。RNA由核糖核苷酸经磷酸二酯键缩合而成长链状分子。一个核糖核苷酸分子由磷酸,核糖和碱基构成。RNA的碱基主要有4种,即A腺嘌呤、G鸟嘌呤、C胞嘧啶、U尿嘧啶,其中,U(尿嘧啶)取代了DNA中的T。
RNA编辑是指在mRNA水平上改变遗传信息的过程。具体说来,指基因转录产生的mRNA分子中,由于核苷酸的缺失,插入或置换,基因转录物的序列不与基因编码序列互补,使翻译生成的蛋白质的氨基酸组成,不同于基因序列中的编码信息现象。
生物学意义:
1、改变和补充遗传信息;
2、RNA的编辑能增加基因产物的多样性;
3、RNA编辑与生物细胞发育和分化有关,是基因表达调控的一种重要方式;
4、RNA编辑还可能是基因产物获得新的结构和功能,有利于复杂的生物进化;RNA的编辑很可能与学习和记忆有关
5、RNA编辑的结果不仅扩大了遗传信息,而且使生物更好地适应生存环境

文章标签:

本文标题: rna的生物学功能有什么意义?
本文地址: http://www.rixia.cc/wenda/145572.html

上一篇:家里养花多久施肥一次

下一篇:三十一朵玫瑰代表什么

相关推荐

推荐阅读

猜你喜欢

返回顶部