日夏养花网

您好,欢迎访问日夏养花网,我们的网址是:http://www.rixia.cc

用激素处理植物时应将生长素加在茎芽端而不是放在培养液中,对吗

2021-01-20 00:01:06 分类:养花问答 来源: 日夏养花网 作者: 网络整理 阅读:236

生长素属于什么 (如蛋白质等)

生长素属来于有机酸。
生长素(auxin)是一类含有一个源不饱和芳香族环和一个乙酸侧链的内源激素,英文简称IAA,国际通用。生长素有调节茎的生长速率、抑制侧芽、促进生根等作用。4-氯-IAA、5-羟-IAA、萘乙酸(NAA)、吲哚丁酸等为类生长素。1872年波兰园艺学家谢连斯基对根尖控制根伸长区生长作了研究,后来达尔文父子对草的胚芽鞘向光性进行了研究。1928年温特证实了胚芽的尖端确实产生了某种物质,能够控制胚芽生长。1934年,凯格等人从一些植物中分离出了这种物质并命名它为吲哚乙酸,因而习惯上常把吲哚乙酸作为生长素的同义词。
是一种激bai素。
生长素有多方du面的生理效应,这与zhi其浓度有关。低浓度时可以dao促进生长,版高浓度时则权会抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。生长素的生理效应表现在两个层次上。

在细胞水平上,生长素可刺激形成层细胞分裂;刺激枝的细胞伸长、抑制根细胞生长;促进木质部、韧皮部细胞分化,促进插条发根、调节愈伤组织的形态建成。

在器官和整株水平上,生长素从幼苗到果实成熟都起作用。
高中书本62616964757a686964616fe78988e69d8331333238653265上说的就是吲哚乙酸,一种有机化合物。

如果你想扩展知识的话

生长素是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,英文简称IAA,国际通用,是吲哚乙酸(IAA)。4-氯-IAA、5-羟-IAA、萘乙酸(NAA)、吲哚丁酸等为类生长素。1872年波兰园艺学家谢连斯基对根尖控制根伸长区生长作了研究;后来达尔文父子对草的胚芽鞘向光性进行了研究。1928年温特证实了胚芽的尖端确实产生了某种物质,能够控制胚芽生长。1934年,凯格等人从一些植物中分离出了这种物质并命名它为吲哚乙酸,因而习惯上常把吲哚乙酸作为生长素的同义词。
生长素在扩展的幼嫩叶片和顶端分生组织中合成,通过韧皮部的长距离运输,自上而下地向基部积累。根部也能生产生长素,自下而上运输。植物体内的生长素是由色氨酸通过一系列中间产物而形成的。其主要途径是通过吲哚乙醛。吲哚乙醛可以由色氨酸先氧化脱氨成为吲哚丙酮酸后脱羧而成,也可以由色氨酸先脱羧成为色胺后氧化脱氨而形成。然后吲哚乙醛再氧化成吲哚乙酸。另一条可能的合成途径是色氨酸通过吲哚乙腈转变为吲哚乙酸。
在植物体内吲哚乙酸可与其它物质结合而失去活性,如与天冬氨酸结合为吲哚乙酰天冬氨酸,与肌醇结合成吲哚乙酸肌醇,与葡萄糖结合成葡萄糖苷,与蛋白质结合成吲哚乙酸-蛋白质络合物等。结合态吲哚乙酸常可占植物体内吲哚乙酸的50~90%,可能是生长素在植物组织中的一种储藏形式,它们经水解可以产生游离吲哚乙酸。
植物组织中普遍存在的吲哚乙酸氧化酶可将吲哚乙酸氧化分解。
生长素有多方面的生理效应,这与其浓度有关。低浓度时可以促进生长,高浓度时则会抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。生长素的生理效应表现在两个层次上。
在细胞水平上,生长素可刺激形成层细胞分裂;刺激枝的细胞伸长、抑制根细胞生长;促进木质部、韧皮部细胞分化,促进插条发根、调节愈伤组织的形态建成。
在器官和整株水平上,生长素从幼苗到果实成熟都起作用。生长素控制幼苗中胚轴伸长的可逆性红光抑制;当吲哚乙酸转移至枝条下侧即产生枝条的向地性;当吲哚乙酸转移至枝条的背光侧即产生枝条的向光性;吲哚乙酸造成顶端优势;延缓叶片衰老;施于叶片的生长素抑制脱落,而施于离层近轴端的生长素促进脱落;生长素促进开花,诱导单性果实的发育,延迟果实成熟。
近年来提出激素受体的概念。激素受体是一个大分子细胞组分,能与相应的激素特异地结合,尔后发动一系列反应。吲哚乙酸与受体的复合物有两方面的效应:一是作用于膜蛋白,影响介质酸化、离子泵运输和紧张度变化,属于快反应(〈10分钟〉;二是作用于核酸,引起细胞壁变化和蛋白质合成,属于慢反应()10分钟)。介质酸化是细胞生长的重要条件。吲哚乙酸能活化质膜上ATP(腺苷三磷酸)酶,刺激氢离子流出细胞,降低介质pH值,于是有关的酶被活化,水解细胞壁的多糖,使细胞壁软化而细胞得以扩伸。
施用吲哚乙酸后导致特定信使核糖核酸(mRNA)序列的出现,从而改变了蛋白质的合成。吲哚乙酸处理还改变了细胞壁的弹性,使细胞的生长得以进行。
生长素对生长的促进作用主要是促进细胞的生长,特别是细胞的伸长,对细胞分裂没有影响。植物感受光刺激的部位是在茎的尖端,但弯曲的部位是在尖端的下面一段,这是因为尖端的下面一段细胞正在生长伸长,是对生长素最敏感的时期,所以生长素对其生长的影响最大。趋于衰老的组织生长素是不起作用的。生长素能够促进果实的发育和扦插的枝条生根的原因是:生长素能够改变植物体内的营养物质分配,在生长素分布较丰富的部分,得到的营养物质就多,形成分配中心。生长素能够诱导无籽番茄的形成就是因为用生长素处理没有受粉的番茄花蕾后,番茄花蕾的子房就成了营养物质的分配中心,叶片进行光合作用制造的养料就源源不断地运到子房中,子房就发育了。
植物生长素生理作用的两重性:
较低浓度促进生长,较高浓度抑制生长。植物不同的器官对生长素最适浓度的要求是不同的。根的最适浓度约为10E-10mol/L,芽的最适浓度约为10E-8mol/L,茎的最浓度约为10.3E-5mol/L。在生产上常常用生长素的类似物(如萘乙酸、2,4-D等)来调节植物的生长如生产豆芽菜时就是用适宜茎生长的浓度来处理豆芽,结果根和芽都受到抑制,而下胚轴发育成的茎很发达。植物茎生长的顶端优势是由植物对生长素的运输特点和生长素生理作用的两重性两个因素决定的,植物茎的顶芽是产生生长素最活跃的部位,但顶芽处产生的生长素浓度通过主动运输而不断地运到茎中,所以顶芽本身的生长素浓度是不高的,而在幼茎中的浓度则较高,最适宜于茎的生长,对芽却有抑制作用。越靠近顶芽的位置生长素浓度越高,对侧芽的抑制作用就越强,这就是许多高大植物的树形成宝塔形的原因。但也不是所有的植物都具有强烈的顶端优势,有些灌木类植物顶芽发育了一段时间后就开始退化,甚至萎缩,失去原有的顶端优势,所以灌木的树形是不成宝塔形的。由于高浓度的生长素具有抑制植物生长的作用,所以生产上也可用高浓度的生长素的类似物作除草剂,特别是对双子叶杂草很有效。
生长素类似物:2,4-D.因为生长素在植物体内存在量很少,为了调控植物生长,人们发现了生长素类似物,它们具有和生长素类似的效果而且可以进行量产,现已广泛运用到农业生产中。
地球引力对生长素分布的影响:
茎的背地生长和根的向地生长是由地球的引力引起的,原因是地球引力导致生长素分布的不均匀,在茎的近地侧分布多,背地侧分布少。由于茎的生长素最适浓度很高,茎的近地侧生长素多了一些对其有促进作用,所以近地侧生长快于背地侧,保持茎的向上生长;对根而言,由于根的生长素最适浓度很低,近地侧多了一些反而对根细胞的生长具有抑制作用,所以近地侧生长就比背地侧生长慢,保持根的向地性生长。若没有引力,根就不一定往下长了。
在失重状态对植物生长的影响:
根的向地生长和茎的背地生长是要有地球引力诱导的,是由于在地球引力的诱导下导致生长素分布不均匀造成的。在太空失重状态下,由于失去了重力作用,所以茎的生长也就失去了背地性,根也失去了向地生长的特性。但茎生长的顶端优势仍然是存在的,生长素的极性运输不受重力影响。
生长素的发现:
生长素是最早发现的植物激素。
1880年
英国的达尔文在用金丝雀薏草研究植物的向光性时发现,对胚芽鞘单向照光,会引起胚芽鞘的向光性弯曲。切去胚芽鞘的尖端或用不透明的锡箔小帽罩住胚芽鞘,用单侧光照射不会发生向光性弯曲。因此,达尔文认为胚芽鞘在单侧光下产生了一种向下移动的物质,引起胚芽鞘的背光面和向光面生长快慢不同,使胚芽鞘向光弯曲。
1928年
荷兰德温特把切下的燕麦胚芽鞘尖直与琼胶块上,经过一段时间后,移去胚芽鞘尖把这些琼脂小块放置在去尖的胚芽鞘的一边,结果有琼胶的一边生长较快,向相反方向弯曲。这个实验证实了胚芽鞘尖产生的一种物质扩散到琼胶中,再放置于胚芽鞘上时,可向胚芽鞘下部转移,并促进下部生长。后来Went首次分离鞘尖产生的与生长有关的物质,并把这种物质命名为生长素。
1934年
荷兰的Kogl等人从人尿中分离出一种化合物,加入到琼胶中,同样能诱导胚芽鞘弯曲,该化合物被证明是吲哚乙酸。随后Kogl等人在植物组织中也找到了吲哚乙酸(indoleacetie acid简称IAA)。
小结:植物生长素的发现体现了科学研究的基本思路:A.提出问题,做出假设,设计试验,得出结论B.试验中体现了设计试验的单一变量原则;达尔文试验的单一变量是尖端的有无,温特试验的单一变量是琼脂是否与胚芽鞘尖端接触过。
生长素的代谢 Metabolism of IAA
生长素的分布和运输:
1、分布 (Distribution)
生长素在植物体内分布很广,几乎各部位都有,但不是均匀分布的,在某一时间,某一特定部位的含量是受几方面的因素影响的。大多集中在生长旺盛的部分(胚芽鞘、芽和根尖的分生组织、形成层、受精后的子房、幼嫩种子等),而趋向衰老的组织和器官中则甚少。
2、运输 (Transport)
极性运输 (Polar Transport)
生长素在植物茎、胚芽鞘、下胚轴、叶柄中存在着向基的极性运输,从形态学上端向下端传导。地上部向基运输;
植物的极性现象在生产上早受到人们的注意,如在扦插、嫁接以及组织培养时,都需将其形态学的下端向下,上端朝上,避免倒置。
(二)生长素的代谢
1.生长素的生物合成
IAA的合成前体:色氨酸(tryptophan,Trp)。其侧链经过转氨、脱羧、氧化等反应。锌是色氨酸合成酶的组分,缺锌时导致由吲哚和丝氨酸结合而形成色氨酸的过程受阻,色氨酸含量下降,从而影响IAA的合成。生产上常引起苹果、梨等果树的小叶病。
2.生长素的结合和降解
植物体内生长素有两种形式:游离型:有生物活性,束缚型:活性低。
在体内,吲哚乙酸常常与天门冬氨酸结合成为吲哚乙酰天冬氨酸酯。还可与肌醇结合成吲哚乙醇肌醇。与葡萄糖结合成吲哚乙酰葡萄糖苷。与蛋白质结合成吲哚乙酸—蛋白质络合物。束缚型的生长素可能是生长素在细胞内的一种贮存形式,也是减少过剩生长素的解毒方式,在适当的条件下(pH9-10),它们可转变为游离型,经运输转移到作用部位起作用。
正在生长的种子中生长素的量也多,但完全成熟以后,大部分以束缚态贮藏起来。种子中以束缚态存在,萌发时转变为游离型。
生长素的降解(Degradation of IAA)
①酶氧化降解:吲哚乙酸氧化酶分解
植物体内生长素常处于合成与分解的动态平衡中。吲哚乙酸氧化酶(IAA oxidase)是一种含Fe的血红蛋白。IAA经酶解后形成3—羟基甲基氧吲哚和3—甲基氧吲哚。此反应要在O2存在下,以Mn和一元酚作辅助因子,吲哚乙酸氧化酶才表现活性。
②光氧化分解:
X-光,紫外光,可见光对IAA都有破坏作用,分解产物也是3-亚甲基氧化吲哚和吲哚醛。但目前机制不清楚,在试管里,植物的某些色素,如核黄素,紫黄质等能大量吸收兰光,并促进IAA的光氧化分解。
植物体内生长素存在的两种形式间的转化或吲哚乙酸氧化酶对IAA的氧化分解都是植物对体内生长素水平的自动调节,对植物生长的调控是有重要意义的。
生长素在农业上的运用:
一、促进营养器官的伸长
生长素(IAA)对营养器官纵向生长有明显的促进作用。如芽、茎、根三种器官,随着浓度升高,器官伸长递增至最大值,此时生长素浓度为最适浓度,超过最适浓度,器官的伸长受到抑制。不同器官的最适浓度不同,茎端最高,芽次之,根最低。由次可知,根对IAA(生长素)最敏感,极低的浓度就可促进根生长,最适浓度为10-10M。茎对IAA敏感程度比根低,最适浓度为10-5M。芽的敏感程度处于茎与根之间,最适浓度约为10-8M。所以能促进主茎生长的浓度往往对侧芽和根生长有抑制作用。
二、促进细胞分裂和根的分化
生长素与细胞分裂素配合能引起细胞分裂,而且生长素也能单独引起细胞分裂。如早春树木形成层细胞恢复分裂活动是由顶芽产生的生长素下运而引起的。
生长素对器官建成的作用最明显的是表现在促进根原基形成及生长上。苗木插枝在其基部产生不定根,对木本植物来说,主要是由新的次生韧皮部组织分化,但也可由其它组织分化形成,如形成层、维管射线及髓部。吲哚丁酸(IBA)在生长素中促进生根的效果最好,在应用方面发现IBA(吲哚丁酸)与萘乙酸(NAA)比吲哚乙酸(IAA)稳定,效果更好。
三、维持植物的顶端优势
正在生长的植物茎端对侧芽的生长有抑制作用,这种现象称为顶端优势。棉花用缩节胺控制顶端生长或打顶后,侧芽大量发生。
四、抑制离区的形成
棉花与果树落花、落果及落叶,是双子叶植物的普遍现象。棉花的蕾铃脱落,与营养物质的供给有关,也与激素水平有关。当蕾铃柄的基部,远轴端生长素含量高,近轴端生长素含量低时,抑制离层内纤维素酶、果胶酶的活性,因而抑制离层细胞的分离,蕾铃不脱落;反之,当近轴端生长素含量高,远轴端生长素含量低时,则使果胶酶和纤维素酶活性提高,促进离层的分离,致使蕾铃脱落。
五、促进果实发育及单性结实
植物开花受精之后,子房中的生长素含量提高,从而促进子房及其周围组织的膨大,加速了果实的发育。如雌蕊未经受精而子房能及时获得IAA,也能诱导某些植物无籽果实的形成。如在授粉前用生长素喷或涂于柱头上,不经授粉最终也能发育成单性果实。如胡椒、西瓜、番茄、茄子、冬青、西葫芦和无花果等
生长素就是吲哚乙酸(IAA),是一类含有一个不饱和芳香族环和一个乙酸侧链的内源植物激素,不是蛋白质。

高中生物植物激素,请生物高手进。

具体说出乙烯,生长素,细胞分裂素,脱落酸,赤霉素。这五种植物激素在生活中的应用。谢谢了。我们生物讲过的,我生物笔记丢了。能回答对的,要多少分给多少分。
植物激素有五类,即生长素(Auxin)、赤霉32313133353236313431303231363533e4b893e5b19e31333262343764素(GA)、细胞分裂素(CTK)、脱落酸(ABA)和乙烯(ethyne,ETH)。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样。例如从影响细胞的分裂、伸长、分化到影响植物发芽、生根、开花、结实、性别的决定、休眠和脱落等。所以,植物激素对植物的生长发育有重要的调节控制作用。
低浓度的生长素有促进器官伸长的作用。从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。
吲哚乙酸可以人工合成。生产上使用的是人工合成的类似生长素的物质如吲哚丙酸、吲哚丁酸、萘乙酸、2,4-滴、4-碘苯氧乙酸等,可用于防止脱落、促进单性结实、疏花疏果、插条生根、防止马铃薯发芽等方面。愈伤组织容易生芽;反之容易生根。2,在组织培养中当它们的含量大于生长素时,4-滴曾被用做选择性除草剂。细胞分裂素还可促进芽的分化。
赤霉素主要存在于幼根、幼叶、幼嫩种子和果实等部位,由甲羟戊酸经贝壳杉烯等中间物合成。后证明其中含有一种能诱导细胞分裂的成分,赤霉素在植物体内运输时无极性,通常由木质部向上运输,由韧皮部向下或双向运输。赤霉素最显著的效应是促进植物茎伸长。
细胞分裂素的主要生理作用是促进细胞分裂和防止叶子衰老。定名为赤霉素(GA)。绿色植物叶子衰老变黄是由于其中的蛋白质和叶绿素分解;而细胞分裂素可维持蛋白质的合成,从而使叶片保持绿色,发现感病稻苗的徒长和黄化现象与赤霉菌(Gibberellafujikuroi)有关。延长其寿命。细胞分裂素还可促进芽的分化。
吲哚乙酸可以人工合成。脱落酸存在于植物的叶、休眠芽、成熟种子中。生长素也有重要作用。通常在衰老的器官或组织中的含量比在幼嫩部分中的多。它的作用在于抑制 RNA和蛋白质的合成,从而抑制茎和侧芽生长,因此是一种生长抑制剂,有利于细胞体积增大。与赤霉素有拮抗作用。脱落酸通过促进离层的形成而促进叶柄的脱落,在于它能使细胞壁环境酸化、水解酶的活性增加,还能促进芽和种子休眠。
乙烯可以促进RNA和蛋白质的合成,在高等植物体内,并使细胞膜的透性增加, 生长素在低等和高等植物中普遍存在。加速呼吸作用。因而果实中乙烯含量增加时,已合成的生长素又可被植物体内的酶或外界的光所分解,可促进其中有机物质的转化,加速成熟。乙烯也有促进器官脱落和衰老的作用。用乙烯处理黄化幼苗茎可使茎加粗和叶柄偏上生长。则吲哚乙酸通过酶促反应从色氨酸合成。乙烯还可使瓜类植物雌花增多,在植物中,促进橡胶树、漆树等排出乳汁。乙烯是气体。
植物激素对生长发育和生理过程的调节作用,往往不是某一种植物激素的单独效果。能传到茎的伸长区引起弯曲。由于植物体内各种内源激素间可以发生增效或拮抗作用,只有各种激素的协调配合,才能保证植物的正常生长发育。已知的植物激素主要有以下 5类:生长素、赤霉素、细胞分裂素、脱落酸和乙烯。
我只说说我知道的,呵呵
生长素在生活中应用很广的
1.扦插枝条前用生长素类似物浸泡可以专促进生根,属而且枝条最好带芽,因为芽产生生长素很多。
2.生长素可以促进种子萌发,可用生长素类似物浸泡种子后再播种
3.不过最常用的还是除草剂,除草剂如6,4D就是生长素类似物,除草原理是,杂草一般是双子叶植物,对生长素敏感,高浓度生长素可以抑制其生长甚至杀死,而这个浓度对单子叶的作物是促进生长的
乙烯可以加速果实成熟,是很好的催熟剂。(把香蕉跟苹果放在一起可以使苹果变熟哦)
脱落酸跟生长素的作用相反,可以抑制细胞生长,应用于种子的储存,可以防止种子发芽霉变
乙烯 主要是促进果实62616964757a686964616fe78988e69d8331333262343764的成熟
生长素 在细胞水平上,生长素可刺激形成层细胞分裂;刺激枝的细胞伸长、抑制根细胞生长;促进木质部、韧皮部细胞分化,促进插条发根、调节愈伤组织的形态建成。
在器官和整株水平上,生长素从幼苗到果实成熟都起作用。生长素控制幼苗中胚轴伸长的可逆性红光抑制;当吲哚乙酸转移至枝条下侧即产生枝条的向地性;当吲哚乙酸转移至枝条的背光侧即产生枝条的向光性;吲哚乙酸造成顶端优势;延缓叶片衰老;施于叶片的生长素抑制脱落,而施于离层近轴端的生长素促进脱落;生长素促进开花,诱导单性果实的发育,延迟果实成熟(资料上的)
主要记住它有两重性
细胞分裂素 促进细胞分裂
脱落酸 1. 抑制与促进生长。外施脱落酸浓度大时抑制茎、下胚轴、根、胚芽鞘或叶片的生长。浓度低时却促进离体黄瓜子叶生根与下胚轴伸长,加速浮萍的繁殖,刺激单性结实种子发育。

2. 维持芽与种子休眠。休眠与体内赤霉素与脱落酸的平衡有关。

3. 促进果实与叶的脱落。

4. 促进气孔关闭。脱落酸可使气孔快速关闭,对植物又无毒害,是一种很好的抗蒸腾剂。检验脱落酸浓度的一种生物试法即是将离体叶片表皮漂浮于各种浓度脱落酸溶液表面,在一定范围内,其气孔开闭程度与脱落酸浓度呈反比。

5. 影响开花。在长日照条件下,脱落酸可使草莓和黑莓顶芽休眠,促进开花。

6. 影响性分化。赤霉素能使大麻的雌株形成雄花,此效应可被脱落酸逆转,但脱落酸不能使雄株形成雌花。
(高中了解1,3就可以了)
赤霉素最突出的作用是加速细胞的伸长(赤霉素可以提高植物体内生长素的含量,而生长素直接调节细胞的伸长),对细胞的分裂也有促进作用,它可以促进细胞的扩大(但不引起细胞壁的酸化)
乙烯促进果实成熟抄
生长素有助于插条生根,促进果实发育,防止落花落果
细胞分裂素促进细胞分裂,常用于它来保持蔬菜鲜绿,延长贮存时间
赤霉素促进矮生性植物茎杆伸长,解除种子和其他部位的休眠。
脱落酸抑制细胞分裂,抑制种子萌发,促进叶和果实的衰老和脱落
乙烯:催熟,促抄进果实成熟
生长素:去除顶端bai优du势(以促进侧芽的发育,多开花多结果zhi)
防止叶片脱落、dao促进果实、获得无籽果实、促使扦插纸条的生根
细胞分裂素:促进细胞分裂
脱落酸:抑制细胞分裂,促进叶和果实的衰老和脱落。
赤霉素:促进细胞伸长,从而引起植株增高
促进种子萌发和果实发育
可不可以呀?
呃,太久了记不住了。。你可以去找一下植物学或者竞赛书,里面都有很详细的归纳。。

激素在生活当中有什么应用呢?

例如催植物生长的那些等等拉
例如低浓度62616964757a686964616fe4b893e5b19e31333236376562的生长素有促进器官伸长的作用。从而可减少蒸腾失水。可是超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。即乙烯的存在对生长素的作用起结抗作用。
在植物生长发育过程中,任何一种生理反应都不是单一激素作用的结果,而是各种激素相互作用的结果,各种激素间的相互作用是很复杂的,有时表现为增效作用,有时表现为拮抗作用。你的试剂中赤霉素受体拮抗剂,可以使赤霉素/生长素比例降低,生长 素水平相对升高,则促进生根;可以使细胞分裂素/赤霉素比例升高,细胞分裂素相对升高.
在植物的生长发育过程中,除了需要水分和营养物质的供应,还要受到一些生理活性物质的调节和控制。这些调节和控制植物生长发育的物质,称为植物生长物质。植物生长物质包括两大类:一是植物体自身代谢过程中产生的,称为植物激素。二是人工合成的,具有植物激素活性的有机物,称为植物生长调节剂。
一、植物激素
植物激素有四个重要特性:内源性,它是植物生命活动中细胞内部的产物,并广泛存在于植物界。调控性,可通过自身生命活xNEbI动调节和控制植物生长发育。移动性,可从植物的合成位点运输到作用位点。显效性,在植物体内含量甚微,多以微克计算,但可起到明显增效的作用。国际公认的植物激素有五大类:生长素、赤霉素、细胞分裂素、脱落酸和乙烯。
1.生长素
生长素的特性:生长素即吲哚乙酸,简称IAA(图12-1)。因生长素在植物体内易被破坏,生产上一般不用吲哚乙酸来处理植物,而多采用与其类似的生长调节剂如吲哚丁酸、萘乙酸等处理植物。
生长素的作用:促进植物的伸长生长、促进插枝生根、诱导单性结实 控制雌雄性别。生长素最基本的生理作用是促进生长,但是与生长素的浓度、植物的种类与器官、细胞的年龄等因素有关。生长素浓度较低时可促进生长,较高浓度时则抑制生长。双子叶植物一般比单子叶植物敏感。根比芽敏感,芽比茎敏感,幼嫩细胞比成熟细胞敏感。
2.赤霉素
赤霉素的特性:赤霉素简称GA(图12-2)。配成溶液易失效,适于在低温干燥条件下以粉末形式保存。
赤霉素的生理作用:促进茎和叶的生长、诱导抽苔开花、促进性别分化、打破休眠、防止脱落、诱导单性结实,促进无籽果实的形成。
3.细胞分裂素
细胞分裂素的特性:细胞分裂素简称CTK(图12-3)。主要包括激动素、玉米素等。性质较稳定。
细胞分裂素的生理作用:促进细胞扩大生长、诱导芽的分化、防止衰老、促进腋芽生长。
4.脱落酸
脱落酸的特性:脱落酸简称ABA(图12-4)。是植物体内存在的一种强有力的天然抑制剂,含量极微,活性很高,作用巨大。
脱落酸的生理作用:抑制植物生长、促进脱落、促进休眠、调节气孔关闭。
5.乙 烯
乙烯的特性:乙烯简称ETH(图12-5)。是一种促进组织器官成熟的气态激素。由于乙烯是气体,使用比较困难,所以一般都用它的类似物乙烯利代替。
乙烯的生理作用:加速果实成熟、促进脱落衰老、调节植物生长、促进开花。
在植物生长发育过程中,任何一种生理反应都不是单一激素作用的结果,而是各种激素相互作用的结果,各种激素间的相互作用是很复杂的,有时表现为增效作用,有时表现为拮抗作用。了解各种激素对植物的生理作用、激素间的相互作用,以及和环境间的关系,在农业生产上具有非常重要的意义。
二、植物生长调节剂
随着植物激素的研究和发展,人们合成了许多具有激素活性的物质,以便更有效地控制植物的生长发育,这就是目前普遍应用的植物生长调节剂。
1.生长促进剂
萘乙酸(NAA):扦插生根,控制枝条生长,疏花疏果,防止采前落果,促进菠萝开花,组培中广泛用于生根(图12-6)。
吲哚丁酸(IBA ):果树上主要用于促进扦插生根,引起的不定根多而细长,组培中用于生根,吲哚乙酸适应范围广泛而且安全,是目前最主要的调节剂(图12-7)。
2,4-二氯苯氧乙酸(2,4-D):高浓度时可作为除草剂,低浓度时可防止番茄落花落果并诱导无籽果实的形成,组培中浓度适当时可诱导外植体脱分化(图12-8)。
萘氧乙酸(NOA):促进扦插生根,防止采前果实脱落(图12-9)。
6-苄基腺膘呤(6-BA,BAP):学名绿丹。可显著增加葡萄果粒和果柄的固着力,减少果粒脱落,可促进苹果侧芽萌发,增大分枝角度,在组培中应用较为广泛(图12-10)。
二氢玉米素:促进细胞分裂,促进植物生长(图12-11)。
2.生长延续剂和生长抑制剂
乙烯利(CEPA):乙烯利是目前生产上应用最广泛的调节剂,发挥作用的最适温度是20℃-30℃。促进果实成熟,抑制营养生长,促进花芽形成,诱导雌花形成和雄花不育,促进橡胶乳汁分泌,延迟花期,提早休眠,提高抗寒性(图12-12)。
矮壮素(CCC):抑制营养生长,使植物茎秆加粗,叶色加深,叶片加厚加宽,能够更好地进行光合作用,并抗倒伏,促进花芽形成,增加座果(图12-13)。
三碘苯甲酸(TIBA):一种阻碍生长素运输的物质。消除顶端优势,促进腋芽生长,分枝增多,植株矮化(图12-14)。
比久(B9):抑制顶端优势,刺激果树新梢生长,利于花芽形成,减少采前落果,促进果实着色。比久在农业生产上应用比较广泛,但有试验表明,其对人和牲畜均有毒副作用,致癌性强烈,所以在农业生产中要禁止使用(图12-15)。
多效唑(PP333):延缓植株营养生长,促进生殖生长(图12-16)。
马来酰肼(MH 青鲜素):抑制茎的伸长,防止洋葱、马铃薯、大蒜等在贮藏期间发芽,抑制烟草腋芽生长(图12-17)。但马来酰肼可能致癌和使动物染色体畸变,对食用植物最好以不用为宜。
整形素(形态素):抑制茎的伸长生长和种子萌发,能促使葡萄、番茄等作物产生无籽果实(图12-18)。
烯效唑(S3307 ):生理作用同多效唑,但比多效唑强2-4倍,是目前应用较多的一种植物生长调节剂(图12-19)。
植物激素和植物生长调节剂在农业生产上应用非常广泛。为了便于使用,现将它们的效应和应用列于附表,供大家参考。
1.糖皮质激素具有强大的抗炎作用,能抑制多种原因造成的炎症反应,如物理性,化学性,免疫性,感染性及无菌性炎症。具体的机理我就不详细说了。

比如哮喘喷病人的那种药就含有
简单的说,就是配合神经调节,来增强人的适应环境的能力
激素要控制个量是最好的,如果超标了,对人体是很大的伤害,从而导致癌症的产生
制药、养殖

(2012?天津模拟)取某植物的茎,切为等长的茎段,放在含有不同植物激素(IAA表示生长素、GA表示赤霉素)

(2012?天津模拟)取某植物的茎http://www.rixia.cc,切为等长的茎段,放在含有不同植物激素(IAA表示生长素、GA表示赤霉素)的培养基中培养,茎段的生长结果如图所示.此实验结果表明(  )

A.生长素能促进根和茎的伸长,赤霉素仅能促进茎的伸长
B.生长素能促进茎段的生长,赤霉素能促进茎段的分化
C.生长素和赤霉素都是在低浓度时起促进作用,高浓度时起抑制作用
D.生长素和赤霉素都能促进茎段的生长,同时使用时其促进作用加强
A、题干只提到对bai茎段的伸长,du没有涉及对根的zhi实验,A错误;dao
B、图示曲线只显示茎段的日夏养花网生长内结果,没容有涉及分化,B错误;
C、生长素具有低促高抑的两重性,赤霉素没有,C错误;
D、实验的自变量是植物激素(IAA、GA、IAA+GA),因日夏养花网变量是茎段的平均伸长,表明了茎段的生长,从生长效应看,生长素和赤霉素都能促进茎段的生长,二者同时使用时其促进作用加强,D正确.
故选:D.

生长素问题

请问生长素是什么?有什么作用效果?
生长素

百科名片

生长素结构式
生长素(auxin)是一62616964757a686964616fe78988e69d8331333332616466类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,英文简称IAA,国际通用,是吲哚乙酸(IAA)。4-氯-IAA、5-羟-IAA、萘乙酸(NAA)、吲哚丁酸等为类生长素。1872年波兰园艺学家谢连斯基对根尖控制根伸长区生长作了研究;后来达尔文父子对草的胚芽鞘向光性进行了研究。1928年温特证实了胚芽的尖端确实产生了某种物质,能够控制胚芽生长。1934年,凯格等人从一些植物中分离出了这种物质并命名它为吲哚乙酸,因而习惯上常把吲哚乙酸作为生长素的同义词。

姓名: 生长素
外文名: auxin
别名: 吲哚乙酸

发现时间: 1880年
实验分离时间: 1933年
类别: 植物激素

目录
简介
研究历史
化学性质
合成代谢
生理作用
两重性
失重影响

展开
简介
研究历史
化学性质
合成代谢
生理作用
两重性
失重影响

展开

编辑本段简介
即吲哚乙酸,是最早发现的促进植物生长的激素。英文来源于希腊文auxein(生长)。[1]
编辑本段研究历史
1880年C.R.达尔文及其子在最后出版的著作《植物运动的本领》中阐明,禾本科的加那利草的
胚芽鞘被切去顶端就失去向光性响应能力。他的解释是:当幼苗从侧面受光时,顶端产生的影响向下传送,造成向光与背光两侧生长速度不同,从而引起向受光一侧
的弯曲,因而切去顶端后就不呈现向光性响应。1928年F.W.温特用实验证明胚芽鞘尖端有一种促进生长的物质,称之为生长素。它能扩散到琼胶小方块中,
将所得小方块放回到切去顶端的胚芽鞘切面的一侧,可以引起胚芽鞘向另一侧弯曲。而且弯曲度大致与所含促进生长的物质的量成正比。这个实验不但证明了促进生长物质的存在,而且创造了著名的测定生长素的“燕

生长素
麦试法”。1933年F.克格尔从人尿和酵母中分离出吲哚乙酸,它在燕麦试法中能引起胚芽鞘弯曲。以后证明吲哚乙酸即是生长素,普遍存在于各种植物组织之中。[2]
编辑本段化学性质
CAS号 87-51-4

分子式 C10H9NO2

分子量 175.19

熔点 165-169℃

闪点 171℃

物化性质 熔点 165-169C

分解温度 167C

闪点 171C [2]

吲哚乙酸的纯品为白色结晶,难溶于水。易溶于乙醇、乙醚等有机溶剂。在光下易被氧化而变为红色,生理活性也降低。植物体内的吲哚乙酸有呈自由状态的,也有呈结合(被束缚)状态的。后者多是酯的或肽的复合物。植物体内自由态吲哚乙酸的含量很低,每千克鲜重约为1~100微克,因存在部位及组织种类而异,生长旺盛的组织或器官如生长点、花粉中的含量较多。
编辑本段合成代谢
从色氨酸开始,其途径有5个(见图)。图中③存在于西葫芦中,④存在于某些十字花科植物中,⑤存在于番茄中。

生长素的降解,最明显的是在光下很容易发生光氧化而被破坏。汤玉玮和J.邦纳于1947年发现植物组织中有些氧化酶能降解吲哚乙酸,称为吲哚乙酸氧化酶。
编辑本段生理作用
生长素最明显的作用是促进生长,但对茎、芽、根生长的促进作用因浓度而异。三者的最适浓度是茎>芽>根,大约分别为每升10E-5摩尔、10E-8摩尔、10E-10摩尔。植物体内吲哚乙酸的运转方向表现明显的极性,主要是由上而下。植物生长中抑制腋芽生长的顶端优势,与吲哚乙酸的极性运输及分布有密切关系。生长素还有促进愈伤组织形成和诱导生根的作用。  生长素的作用是多部位的,主要参与细胞壁的形成和核酸代谢。用放射性氨基酸饲喂离体组织的实验,证明生长素促进生长的同时也促进蛋白质的生物合成。生长素促进RNA的生物合成尤为显著,因此增加了RNA/DNA及RNA/蛋白质的比率。在各种 RNA中合成受促进最多的是rRNA。在对细胞壁的作用上,生长素活化氢离子泵,降低质膜外的pH值,还大大提高细胞壁的弹性和可塑性,从而使细胞壁变松,并提高吸水力。鉴于生长素影响原生质流动的时间阈值是2分钟,引起胚芽鞘伸长的是15分钟,时间极短,故认为其作用不会是通过影响基因调控,可能是通过影响蛋白质(特别是细胞壁或质

生长素
膜中的蛋白质)合成中的翻译过程而发生的。  因为生长素在体内很容易经代谢而被破坏,所以外施时效果短暂。其类似物生理效果相近而且不易被破坏,故被广泛应用于农业生产(见植物生长调节物质)。 生长素在扩展的幼嫩叶片和顶端分生组织中合成,通过韧皮部的长距离运输,自上而下地向基部积累。根部也能生产生长素,自下而上运输。植物体内的生长素是由色氨酸通过一系列中间产物而形成的。其主要途径是通过吲哚乙醛。吲哚乙醛可以由色氨酸先氧化脱氨成为吲哚丙酮酸后脱羧而成,也可以由色氨酸先脱羧成为色胺后氧化脱氨而形成。然后吲哚乙醛再氧化成吲哚乙酸。另一条可能的合成途径是色氨酸通过吲哚乙腈转变为吲哚乙酸,发现于十字花科植物。

在植物体内吲哚乙酸可与其它物质结合而失去活性,如与天冬氨酸结合为吲哚乙酰天冬氨酸,与肌醇结合成吲哚乙酸肌醇,与葡萄糖结合成葡萄糖苷,与蛋白质结合成吲哚乙酸-蛋白质络合物等。结合态吲哚乙酸常可占植物体内吲哚乙酸的50~90%,可能是生长素在植物组织中的一种储藏形式,它们经水解可以产生游离吲哚乙酸。

植物组织中普遍存在的吲哚乙酸氧化酶可将吲哚乙酸氧化分解。

生长素有多方面的生理效应,这与其浓度有关。低浓度时可以促进生长,高浓度时则会抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。生长素的生理效应表现在两个层次上。

在细胞水平上,生长素可刺激形成层细胞分裂;刺激枝的细胞伸长、抑制根细胞生长;促进木质部、韧皮部细胞分化,促进插条发根、调节愈伤组织的形态建成。  在器官和整株水平上,生长素从幼苗到果实成熟都起作用。生长素控制幼苗中胚轴伸长的可逆性红光抑制;当吲哚乙酸转移至枝条下侧即产生枝条的向地性;当吲哚乙酸转移至枝条的背光侧即产生枝条的向光性;吲哚乙酸造成顶端优势;延缓叶片衰老;施于叶片的生长素抑制脱落,而施于离层近轴端的生长素促进脱落;生长素促进开花,诱导单性果实的发育,延迟果实成熟。

激素受体是一个大分子细胞组分,能与相应的激素特异地结合,尔后发动一系列反应。吲哚乙酸与受体的复合物有两方面的效应:一是作用于膜蛋白,影响介质酸化、离子泵运输和紧张度变化,属于快反应(〈10分钟〉;二是作用于核酸,引起细胞壁变化和蛋白质合成,属于慢反应()10分钟)。介质酸化是细胞生长的重要条件。吲哚乙酸能活化质膜上ATP(腺苷三磷酸)酶,刺激氢离子流出细胞,降低介质pH值,于是有关的酶被活化,水解细胞壁的多糖,使细胞壁软化而细胞得以扩伸。

施用吲哚乙酸后导致特定信使核糖核酸(mRNA)序列的出现,从而改变了蛋白质的合成。吲哚乙酸处理还改变了细胞壁的弹性,使细胞的生长得以进行。

生长素对生长的促进作用主要是促进细胞的生长,特别是细胞的伸长。植物感受光刺激的部位是在茎的尖端,但弯曲的部位
是在尖端的下面一段,这是因为尖端的下面一段细胞正在生长伸长,是对生长素最敏感的时期,所以生长素对其生长的影响最大。趋于衰老的组织生长素是不起作用
的。生长素能够促进果实的发育和扦插的枝条生根的原因是:生长素能够改变植物体内的营养物质分配,在生长素分布较丰富的部分,得到的营养物质就多,形成分
配中心。生长素能够诱导无籽番茄的形成就是因为用生长素处理没有受粉的番茄花蕾后,番茄花蕾的子房就成了营养物质的分配中心,叶片进行光合作用制造的养料
就源源不断地运到子房中,子房就发育了。

合成部位:[叶原基、嫩叶(生长素前身)、顶芽(活化生长素)]、未成熟种子、根尖、形成层

作用

1.顶端优势

2.细胞核分裂、细胞纵向伸长

3.叶片扩大

4.插枝发根

5.愈伤组织

6.抑制块根

7.气孔开放

8.延长休眠[2]
编辑本段两重性
较低浓度促进生长,较高浓度抑制生长。植物不同的器官对生长素最适浓度的要求是不同的。根的最适浓度约为10^(-10)mol/L,芽的最适浓度约为10^(-8)mol/L,茎的最适浓度约为10^(-4)mol/L。在生产上常常用生长素的类似物(如萘乙酸、2,4-D等)来调节植物的生长如生产豆芽菜时就是用适宜茎生长的浓度来处理豆芽,结果根和芽都受到抑制,而下胚轴发育成的茎很发达。植物茎生长的顶端优势是由植物对生长素的运输特点和生长素生理作用的两重性两个因素决定的,植物茎的顶芽是产生生长素最活跃的部位,但顶芽处产生的生长素浓度通过主动运输而不断地运到茎中,所以顶芽本身的生长素浓度是不高的,而在幼茎中的浓度则较高,最适宜于茎的生长,对芽却有抑制作用。越靠近顶芽的位置生长素浓度越高,对侧芽的抑制作用就越强,这就是许多高大植物的树形成宝塔形的原因。但也不是所有的植物都具有强烈的顶端优势,有些灌木类植物顶芽发育了一段时间后就开始退化,甚至萎缩,失去原有的顶端优势,所以灌木的树形是不成宝塔形的。由于高浓度的生长素具有抑制植物生长的作用,所以生产上也可用高浓度的生长素的类似物作除草剂,特别是对双子叶杂草很有效。

生长素类似物:2,4-D.因为生长素在植物体内存在量很少,为了调控植物生长,人们发现了生长素类似物,它们具有和生长素类似的效果而且可以进行量产,现已广泛运用到农业生产中。

注: 双子叶植物比单子叶植物对生长素更敏感,这就是为什么可用高浓度生长素来杀死双子叶杂草而不会伤害单子叶作物的原因

茎的背地生长和根的向地生长是由地球的引力引起的,原因是地球引力导致生长素分布的不均匀,在茎的近地侧分布多,背
地侧分布少。由于茎的生长素最适浓度很高,茎的近地侧生长素多了一些对其有促进作用,所以近地侧生长快于背地侧,保持茎的向上生长;对根而言,由于根的生
长素最适浓度很低,近地侧多了一些反而对根细胞的生长具有抑制作用,所以近地侧生长就比背地侧生长慢,保持根的向地性生长。若没有引力,根就不一定往下长
了。
编辑本段失重影响
根的向地生长和茎的背地生长是要有地球引力诱导的,是由于在地球引力的诱导下导致生长素分布不均匀造成的。在太空失重状态下,由于失去了重力作用,所以茎的生长也就失去了背地性,根也失去了向日夏养花网地生长的特性。但茎生长的顶端优势仍然是存在的,生长素的极性运输不受重力影响。
编辑本段发现
1880年
生长素是最早发现的植物激素。(生长素不同于生长激素)

英国的达尔文在用金丝雀虉草研究植物的向光性时发现,对胚芽鞘单向照光,会引起胚芽鞘的向光性弯曲。切去胚芽鞘的尖端或用不透明的锡箔小帽罩住胚芽鞘,用单侧光照射不会发生向光性弯曲。因此,达尔文认为胚芽鞘在单侧光下产生了一种向下移动的物质,引起胚芽鞘的背光面和向光面生长快慢不同,使胚芽鞘向光弯曲。
1910年
詹森的实验证明,胚芽鞘尖端产生的影响可以透过琼脂片传递给下部。
1914年
拜尔的实验证明,胚芽鞘的弯曲生长,是因为尖端产生的影响在其下部分布不均匀造成的。
1928年
荷兰的
温特把切下的燕麦胚芽鞘尖直立于琼胶块上,经过一段时间后,移去胚芽鞘尖把这些琼脂小块放置在去尖的胚芽鞘的一边,结果有琼脂块的一边生长较快,向相反方
向弯曲。这个实验证实了胚芽鞘尖产生的一种物质扩散到琼脂块中,再放置于胚芽鞘上时,可向胚芽鞘下部转移,并促进下部生长。温特认为,这可能是一种和动物激素类似的物质,并命名为生长素。
1931年
荷兰的郭葛(Kogl)等人从人尿中分离出一种化合物,加入到琼胶中,同样能诱导胚芽鞘弯曲,该化合物被证明是吲哚乙酸。随后郭葛等人在植物组织中也找到了吲哚乙酸(indoleacetie acid简称IAA)。
小结
植物生长素的发现体现了科学研究的基本思路:A.提出问题,做出假设,设计试验,得出结论B.试验中体现了设计试验的单一变量原则;达尔文试验的单一变量是尖端的有无,温特试验的单一变量是琼脂是否与胚芽鞘尖端接触过。
编辑本段代谢
分布
(Distribution)

生长素在植物体内分布很广,几乎各部位都有,但不是均匀分布的,在某一时间,某一特定部位的含量是受几方面的因素影响的。大多集中在生长旺盛的部分(胚芽鞘、芽和根尖的分生组织、形成层、受精后的子房、幼嫩种子等),而趋向衰老的组织和器官中则甚少。
运输
(Transport)

极性运输 (Polar Transport)

生长素主要是在植物的顶端分生组织中合成的,然后被运输到植物体的各个部分。生长素在植物体内的运输是单方向的,只能从植物体形态学上端向形态学下端运输,在有单一方向的刺激(单侧光照)时生长素向背光一侧运输,其运输方式为主动运输(需要载体和ATP)。

非极性运输(Non polar transport)

在成熟组织中,生长素可以通过韧皮部进行非极性运输。
合成
IAA的合成前体:色氨酸(tryptophan,Trp)。其侧链经过转氨、脱羧、氧化等反应。锌是色氨酸合成酶的组分,缺锌时导致由吲哚和丝氨酸结合而形成色氨酸的过程受阻,色氨酸含量下降,从而影响IAA的合成。生产上常引起苹果、梨等果树的小叶病。
结合
植物体内生长素有两种形式:游离型:有生物活性,束缚型:活性低。

在体内,吲哚乙酸常常与天门冬氨酸结合成为吲哚乙酰天冬氨酸酯。还可与肌醇结合成吲哚乙醇肌醇。与葡萄糖结合成吲哚
乙酰葡萄糖苷。与蛋白质结合成吲哚乙酸—蛋白质络合物。束缚型的生长素可能是生长素在细胞内的一种贮存形式,也是减少过剩生长素的解毒方式,在适当的条件
下(pH9-10),它们可转变为游离型,经运输转移到作用部位起作用。

正在生长的种子中生长素的量也多,但完全成熟以后,大部分以束缚态贮藏起来。种子中以束缚态存在,萌发时转变为游离型。
降解
生长素的降解(Degradation of IAA)

①酶氧化降解:吲哚乙酸氧化酶分解

植物体内生长素常处于合成与分解的动态平衡中。吲哚乙酸氧化酶(IAA oxidase)是一种含Fe的血红蛋白。IAA经酶解后形成3—羟基甲基氧吲哚和3—甲基氧吲哚。此反应要在O2存在下,以Mn和一元酚作辅助因子,吲哚乙酸氧化酶才表现活性。

②光氧化分解:

X-光,紫外光,可见光对IAA都有破坏作用,分解产物也是3-亚甲基氧化吲哚和吲哚醛。但机制尚不清楚,在试管里,植物的某些色素,如核黄素,紫黄质等能大量吸收蓝光,并促进IAA的光氧化分解。

植物体内生长素存在的两种形式间的转化或吲哚乙酸氧化酶对IAA的氧化分解都是植物对体内生长素水平的自动调节,对植物生长的调控是有重要意义的。
编辑本段农业运用
促进生长

长素(IAA)对营养器官纵向生长有明显的促进作用。如芽、茎、根三种器官,随着浓度升高,器官伸长递增至最大值,此时生长素浓度为最适浓度,超过最适浓
度,器官的伸长受到抑制。不同器官的最适浓度不同,茎端最高,芽次之,根最低。由次可知,根对IAA(生长素)最敏感,极低的浓度就可促进根生长,最适浓
度为10^-10。茎对IAA敏感程度比根低,最适浓度为10^-5。芽的敏感程度处于茎与根之间,最适浓度约为10^-8。所以能促进主茎生长的浓度往
往对侧芽和根生长有抑制作用。
促进分化
生长素与细胞分裂素配合能引起细胞分裂,而且生长素也能单独引起细胞分裂。如早春树木形成层细胞恢复分裂活动是由顶芽产生的生长素下运而引起的。

生长素对器官建成的作用最明显的是表现在促进根原基形成及生长上。苗木插枝在其基部产生不定根,对木本植物来说,主要是由新的次生韧皮部组织分化,但也可由其它组织分化形成,如形成层、维管射线及髓部。吲哚丁酸(IBA)在生长素中促进生根的效果最好,在应用方面发现IBA(吲哚丁酸)与萘乙酸(NAA)比吲哚乙酸(IAA)稳定,效果更好。
维持优势
正在生长的植物茎端对侧芽的生长有抑制作用,这种现象称为顶端优势。棉花用缩节胺控制顶端生长或打顶后,侧芽大量发生。
抑制离区
棉花与果树落花、落果及落叶,是双子叶植物的普遍现象。棉花的蕾铃脱落,与营养物质的供给有关,也与激素水平有关。当蕾铃柄的基部,远轴端生长素含量高,近轴端生长素含量低时,抑制离层内纤维素酶、果胶酶的活性,因而抑制离层细胞的分离,蕾铃不脱落;反之,当近轴端生长素含量高,远轴端生长素含量低时,则使果胶酶和纤维素酶活性提高,促进离层的分离,致使蕾铃脱落。
促进结实

物开花受精之后,子房中的生长素含量提高,从而促进子房及其周围组织的膨大,加速了果实的发育。如雌蕊未经受精而子房能及时获得IAA,也能诱导某些植物
无籽果实的形成。如在授粉前用生长素喷或涂于柱头上,不经授粉最终也能发育成单性果实。如胡椒、西瓜、番茄、茄子、冬青、西葫芦和无花果等
除草剂
低浓度促进植物生长,高浓度抑制植物生长,对于生长素浓度双子叶植物较单子叶植物更为敏感,因此可作为单子叶植物田中除去双子叶植物的除草剂。
编辑本段作用机理
激素作用的机理有各种解释,可以归纳为二:

一、是认为激素作用于核酸代谢,可能是在DNA转录水平上。它使某些基因活化,形成一些新的mRNA、新的蛋白质(主要是酶),进而影响细胞内的新陈代谢,引起生长发育的变化。

二、则认为激素作用于细胞膜,即质膜首先受激素的影响,发生一系列膜结构与功能的变化,使许多依附在一定的细胞器或质膜上的酶或酶原发生相应的变化,或者失活或者活化。酶系统的变化使新陈代谢和整个细胞的生长发育也随之发生变化。此外,还有人认为激素对核和质膜都有影响;或认为激素的效应先从质膜再经过细胞质,最后传到核中。

虽然对激素作用机理有不同的解释,但是,无论哪一种解释都认为,激素必须首先与细胞内某种物质特异地结合,才能产生有效的调节作用。这种物质就是激素的受体。

1.激素受体:植物激素受体是指能与植物激素专一地结合的物质。这种物质能和相应的物质结合,识别激素信号,并将信号转化为一系列的生理生化反应,最终表现出不同的生物学效应。受体是激素初始作用发生的位点。所以,了解激素受体的性质及其在细胞内的存在位置,是研究激素作用机理的重要内容之一。激素受体是一种蛋白质,它们可能定位于细胞质膜,也可能定位于细胞核或细胞质。由于植物体内具有多种激素,因此,必然可能有多种激素受体,并存在于细胞的不同部位。

2.生长素最基本的作用是促进细胞的伸长生长,这种促进作用,在一些离体器官如胚芽鞘或黄化茎切段中尤为明显。生长素为什么能促进细胞的伸长生长,又以什么方式起作用的?

植物细胞的最外部是细胞壁,细胞若要伸长生长即增加其体积,细胞壁就必须相应扩大。细胞壁要
扩大,就首先需要软化与松弛,使细胞壁可塑性加大,同时合成新的细胞壁物质,并增加原生质。实验证明,用生长素处理燕麦胚芽鞘,可增加细胞壁可塑性,而且
在不同浓度的生长素影响下,其可塑性变化和生长的增加幅度很接近,这说明生长素所诱导的生长是通过细胞壁可塑性的增加而实现的。生长素促进细胞壁可塑性增
加,并非单纯的物理变化,而是代谢活动的结果。因为,生长素对死细胞的可塑性变化无效;在缺氧或呼吸抑制剂存在的条件下,可以抑制生长素诱导细胞壁可塑性的变化。
编辑本段相互作用
在植物生长发育的过程中,任何一种生理活动都不是受单一激素的控制,而是各种激素相互作用的结果。也就是说,植物的生长发育过程,是受多种激素的相互作用所控制的。例如,生长素促进细胞增殖,而细胞分裂素则促进增殖的子细胞继续增大。又如,脱落酸强烈地抑制着生长,并使衰老的过程加速,但是这些作用又会被细胞分裂素所解除。再如,生长素的浓度适宜时,促进植物生长,同时开始诱导乙烯的形成。当生长素的浓度超过最适浓度时,就会出现抑制生长的现象。研究激素之间的相互关系,对生产实践有着重要意义。
编辑本段类似物
随着对植物激素的研究,人们也在不断地用人工合成的方法制成一些具有植物激素活性的类似物。这些植物激素类似物,一般叫做植物生长调节剂。植物生长调节剂的种类很多,根据功能的不同,可分为植物生长促进剂(如奈乙酸、2,4-D等)、植物生长抑制剂(如三碘苯甲酸、青鲜素等)和植物生长延缓剂(如短壮素、多效唑等)三类。下面举例简要介绍它们的作用和应用情况。

吲哚丁酸:吲哚丁酸简称IBA。纯品为白色或微黄色的晶体,稍有异臭,不溶于水,能够溶于乙醇、丙酮等有机溶剂中。在使用的时候,可以先把它溶解在少量酒精中,然后再加水稀释到所需要的浓度。它主要用于促进植物的插条生根,尤其对生根作用明显。但是,吲哚丁酸诱发出的根细而长,而奈乙酸诱发出的根比较粗壮,因此,生产中常将这两种植物生长调节剂混合作用。

三碘苯甲酸:三碘苯甲酸简称TIBA,纯品为白色粉末,不溶于水,能溶于乙醇、乙醚等有机溶剂中。三碘苯甲酸能够阻碍生长素在植物体内的运输,抑制茎的顶端的生长,促进侧芽的萌发,从而使植株矮化、分枝增多,并且使开花数和结实数增加。三碘苯甲酸已经广泛应用于大豆生产中,用它的溶液喷施大豆植株,可以使植株变矮,分枝增多,结荚率提高,从而提高大豆的产量。

矮壮素:矮壮素简称CCC,化学名称是2-氯乙基三甲基氯化铵。纯品为白色结晶,易溶于水。它的作用与赤霉素相反,能够抑制细胞伸长,但是不抑制细胞分裂,因而能够使植株变矮,茎秆变粗。矮壮素对于防止水稻和小麦倒伏,阻止棉花蕾铃脱落和提高产量,具有明显的效果。由于矮壮素不容易被土壤固定,也不容易被土壤中的微生物分解,所以直接施用到土壤中效果比较好。

多效唑:多效唑简称PP333。多效唑能够抑制赤霉素的生物合成,
减缓植物细胞的分裂和伸长,并且抑制茎秆伸长。多效唑广泛应用于果树、花卉、蔬菜和大田作物,效果显著。例如,对番茄幼苗喷施多效唑后,可以使幼苗矮壮,
分枝多。我国食品中农药残留标准GB 2763—2005规定了粮谷中多效唑的残留限量标准(MRL)为0.5 ms/kg。

值得注意的是,植物生长调节剂属于农药类。虽然它们的毒性一般是低毒或微毒,但是在使用中仍然要严格遵守安全操作规程,保证人、畜的安全。

文章标签:

本文标题: 用激素处理植物时应将生长素加在茎芽端而不是放在培养液中,对吗
本文地址: http://www.rixia.cc/wenda/83523.html

上一篇:求阿甘正传英文原版电影

下一篇:草莓无土栽培的原理、意义和特点是什

相关推荐

推荐阅读

猜你喜欢

返回顶部