日夏养花网

您好,欢迎访问日夏养花网,我们的网址是:http://www.rixia.cc

植物的生长发育受到多种激素共同的调节,其中赤霉素和生长素都可使植株生长.1926年科学家观察到,当水稻

2020-12-20 18:46:42 分类:养花问答 来源: 日夏养花网 作者: 网络整理 阅读:147

植物激素在植物的生长发育和适应环境变化的过程中起到调节作用.有研究表明(如图1),赤霉素通过影响生

植物激素在植物的生长发育和适应环境变化的过程中起到调节作用.有研究表明(如图1),赤霉素通过影响生长素的合成与分解来促进细胞伸长,生长素氧化酶是一种含铁蛋白,能催化生长素的氧化分解.图2是某研究小组用适宜浓度的生长素(IAA)和赤霉素(GA)处理离体水仙花茎切段后,测得的平均伸长率.

该研究小组进一步开展实验探究,请阅读下列文字并将实验报告补充完整.
提出假设:赤霉素通过促进生长素的合成或通过抑制生长素的分解来间接促进切段伸长.
材料用具:燕麦幼苗,完全培养液、赤霉素溶液、缺铁培养液(溶液浓度均适宜),蒸馏水、琼脂块、刀片等.
实验步骤:
①准备四个配有培养支架的烧杯,分别标记为1-4号.
②向1号和2号烧杯中加入等量适量的完全培养液.
③选取______,平均分为两组,分别在1号和2号烧杯中培养一段时间.
④1号幼苗喷洒适量蒸馏水,2号幼苗喷洒______,继续培养一段时间.
⑤切下1号和2号幼苗的胚芽鞘尖端,分别用琼脂块收集生长素,并将琼脂小块分别放到去尖端胚芽鞘的两侧(如图3所示).培养一段时间后,观察胚芽鞘的弯曲情况,设为A组.
⑥向3号和4号烧杯中加入______,重复步骤③~⑤,观察胚芽鞘的弯曲情况,设为B组.
实验结果分析及结论:
(1)若A组向左弯曲,B组不弯曲(直立生长),说明赤霉素是通过______ 来间接促进切段生长的.
(2)若A组、B组都向左弯曲,且弯曲程度一样,说明赤霉素是通过______来间接促进切段生长的.
(3)若A组、B组都向左弯曲,但A组的弯曲程度大于B组,说明赤霉素______来间接促进切段生长的.
③根据要在1号和2号烧杯中培养一段时间,故可知该句前半句应为选取生内长状况相同的燕麦若干株容,平分为两组;
④变量处理,1号为对照组,故2号需加等量赤霉素溶液;
⑥该实验探究的是:赤霉素通过促进生长素的合成或通过抑制生长素的分解来间接促进切段伸长,由图1可知缺铁培养液(溶液浓度均适宜),可以抑制生长素的氧化.起到对照作用.
故可得到:(1)A组向左弯曲说明生长素促进生长,B组不弯曲(直立生长),故说明赤霉素是通过抑制生长素的分解来提高生长素含量来间接促进切段生长的.
(2)若A组、B组都向左弯曲,且弯曲程度一样,说明赤霉素是通过促进生长素的合成来提高生长www.rixia.cc素含量来间接促进切段生长的.
(3)若A组、B组都向左弯曲,但A组的弯曲程度大于B组,说明赤霉素既能促进生长素的合成又能抑制生长素的分解,提高生长素含量来间接促进切段生长的.
故答案为:
③生长状况相同的燕麦若干株     ④等量赤霉素溶液     ⑥等量的缺铁培养液
(1)抑制生长素的分解来提高生长素含量
(2)促进生长素的合成来提高生长素含量
(3)既能促进生长素的合成又能抑制生长素的分解,提高生长素含量

赤霉素和生长素有什么区别,分别应用于植物生长的哪些方面?

书上的说赤霉素促进细胞伸长,有的辅导资料上却说促进分裂,到底是怎么一回事?这两种植物激素通常应用于哪些方面,如,生长素用于植物扦插生根。(高中水平,指出重点地方就好,不要长篇大论)
赤霉素和生长素都有促进植株生长的作用。都是重要的植物激素。以下是它们的比较:
一、相互促进作用
1、促进植物生长:生长素。
2、延缓叶片衰老:生长素。
3、诱导愈伤组织分化成根或芽:生长素。
4、调节种子发芽:赤霉素。
5、促进果实坐果和生长:生长素、赤霉素。
二、相互拮抗作用
1、顶端优势:生长素促进顶芽生长,赤霉素则促进侧芽生长。
2、调节器官脱落:生长素抑制花朵脱落,脱落酸促进叶、花、果的脱落。
3、两性花的分化:生长素使雌花增加,赤霉素使雄花形成。
赤霉素,1.促进细胞伸长,引起茎秆伸长和植株增高 2.解除种子、块茎的休眠,促进萌发。
生长素,1.引起细胞的分化,促扦插枝条生根,2.促果实发育,3.防止落花落果。
总之,一株植物,要先生根(加生长素),再长高(赤霉素),激素要适量浓度!
生长素对生长的促进作用主要是促进细胞的生长,特别是细胞的伸长,对细胞分裂没有影响。赤霉素可以加速细胞的伸长,对细胞的分裂也有促进作用,它可以促进细胞的扩大。

植物的休眠与生长的调节激素是什么?怎样调节的?

植物生长激素

植物激素 概念:植物体内合成的,并能从产生之处运送到别处,对植物生长发育产生显著作用的有机化学物质。

植物激素种类:目前得到普遍公认的有生长素类、赤霉素类、细胞分裂素类、脱落酸和乙烯五大类。除此之外,还有芸薹素、月光素和多胺素等也具有生长物质活性。

植物激素特点:

1、内生的。它是植物生活动过程中的正常代谢产物。也称为内源激素。

2、能移动的。即从产生部位或合成器官经运输到靶器官起作用。

3、非营养物质。它在体内含量低,但对代谢过程起极大的调节作用。微克级

一、生长素

(一)发现

生长素是发现最早的植物激素。

1872年波兰的西斯勒克发现水平根弯曲生长是受重力影响,感应部位在根尖,因而推测根尖向根基传导刺激性物质。

1880年英国达尔文父子进行了胚芽鞘向光性试验,证实单侧光影响胚芽鞘尖产生刺激并传递。

1928年荷兰人温特证明胚芽鞘确有物质传递,并首先在鞘尖上分离了与生长有关的物质。

1934年荷兰人郭葛分离纯粹的激素,经鉴定为吲哚乙酸,简称IAA

(二)分布和运输

生长素在植物体内分布广,但主要分布在生长旺盛和幼嫩的部位。如:茎尖、根尖、受精子房等。

运输存在极性运输(只能从形态学上端向下端运输而不能反向运输)和非极性运输现象。在茎部是通过韧皮部,胚芽鞘是薄壁细胞,叶片中则是在叶脉。

(三)生理作用

1、促进植物生长 生长素能促进营养器官的伸长,在适宜浓度下对芽、茎、根细胞的伸长有明显的促进作用。不同器官适宜的激素浓度不一样,浓度增大反而会起抑制作用。一般茎端最高,芽次之,根最低。

2、生长素还能促进细胞分裂、果实发育和单性结实、保持顶端优势、愈伤组织的产生,子房膨大和无子果实,插枝生根、器官脱落等有关。

二、赤霉素

(一)发现

1926年日本黑泽英一在研究引起水稻植株徒长的恶苗病时发现的。恶苗病是一种由名为赤霉菌的分泌物引起的水稻苗徒长且叶片发黄,易倒伏,赤霉素因此而得名。

1938年日本薮田贞次提取之,为赤霉酸GA 3。

1959年鉴定出化学结构。

到目前为止,各种植物中均发现有赤霉素存在。根据报道,从低等到高等植物中已分离的赤霉素百余种,做过化学结构鉴定的已有 50余种。命名是根据发现前后常以GA1,GA2,GA 3..... 来命名的。

微克级

(二)合成部位和运输

赤霉素普遍存在于高等植物体内,赤霉素活性最高的部位是植株生长最旺盛的部位。营养芽、幼叶、正在发育的种子和胚胎等含量高,合成也最活跃。成熟或衰老的部位则含量低。

赤霉素在植物体内没有极性运输,体内合成后可做双向运输,向下运输通过韧皮部,向上运输通过木质部随蒸腾流上升。

(三)生理作用

1、促进细胞分裂和茎的伸长 这是赤霉素最显著的生理效应,尤其对矮生突变品种的效果特别显著。原因是矮生品种如玉米和豌豆系单基因突变使植物缺少赤霉素的产生能力。对以叶茎为收获目的的植物象芹菜、莴苣、韭菜、苎麻茶叶等应用后可以提前收获并增加产量。且无高浓度抑制问题。(与IAA明显不同)

2、促进抽薹开花 日照长短和温度高低是影响一些植物能否开花的制约因子(见12章成化生理)。如芹菜要求低温和长日照两个因子均满足才能抽薹、开花,通过GA3处理,便可诱导开花,替代了植物需要的低温和长日照。对于花芽已分化的植物,GA具有显著的促进作用(针叶树种)。

3、打破休眠 GA能有效的打破许多延存器官(种子、块茎)的休眠,促进萌发。如当年收获的马铃薯芽眼处于休眠状态,0.1~1PPM的赤霉素浸泡10~15分钟,即可打破休眠,一年两季栽培。

4、促进雄花分化和提高结实率 对雌雄同株异花植物,使用GA后雄花比例增加,如黄瓜。还可提高梨苹果的座果率,20~50PPM赤霉素喷施可防止棉花脱落。

5、促进单性结实 如用200~500PPM的赤霉素水溶液喷洒开花一周后的果穗,便可形成无子葡萄,无核率达60~90%。

三、细胞分裂素

(一)发现

细胞分裂素是一类具有促进细胞分裂等生理功能的植物生长物质的总称。 1962~1964 Lethem首次从受精后11~16天的甜玉米灌浆初期的子粒中分离出天然的细胞分裂素,命名为玉米素并鉴定了化学结构。到目前为止已鉴定出几十种。

(二)运输和代谢

细胞分裂素普遍存在于旺盛生长的、正在进行分裂的组织或器官、未成熟种子、萌发种子和正在生长的果实。

合成部位为根系。生物合成了解甚少。

运输无极性,可随木质部蒸腾流向上输送。

(三)生理作用

1、促进细胞分裂 细胞分裂过程包括细胞核分裂和细胞质分裂两方面,通常认为生长素主要促进核的有丝分裂,细胞分裂素促进细胞质的分裂。故缺乏细胞分裂素时易形成多核细胞。

2、促进芽的分化 植物组织培养试验发现CTK/IAA比例可对愈伤组织根芽分化起到调控作用。高比值有利于芽的分化,反之则有利于根的形成。比值适当愈伤组织保持生长而不分化。

3、促进细胞扩大 用CTK处理四季豆黄花叶的圆片或菜豆、萝卜的子叶可见细胞明显地扩大。

4、促进侧芽发育,解除顶端优势 CTK作用于腋芽可促进维管束分化有利于营养物质的运输,从而促进腋芽的发育。

5、延缓叶片衰老 离体叶片上如涂抹CTK则涂抹部位可在较长时间内保持鲜绿,因而CTK具有延缓叶片衰老的作用。CTK移动性差,涂抹后可从周围吸取营养,以保持其新鲜度,而使周围组织迅速衰老。因此CTK若处理水果和鲜花则有保鲜保绿的作用。还有解除需光种子的休眠等作用。

四 脱落酸

一、脱落酸的发现

(一)脱落酸的发现
脱落酸(abscisic acid,ABA)是指能引起芽休眠、叶子脱落和抑制生长等生理作用的植物激素。它是人们在研究植物体内与休眠、脱落和种子萌发等生理过程有关的生长抑制物质时发现的。
1961年刘(W.C.liu)等在研究棉花幼铃的脱落时,从成熟的干棉壳中分离纯化出了促进脱落的物质,并命名这种物质为脱落素(后来阿迪柯特将其称为脱落素Ⅰ)。1963年大熊和彦和阿迪柯特(K.Ohkuma and F.T.Addicott)等从225kg 4~7天龄的鲜棉铃中分离纯化出了9mg具有高度活性的促进脱落的物质,命名为脱落素Ⅱ(abscisinⅡ)。
在阿迪柯特领导的小组研究棉铃脱落的同时,英国的韦尔林和康福思)领导的小组正在进行着木本植物休眠的研究。几乎就在脱落素Ⅱ发现的同时,伊格尔斯(C.F.Eagles)和韦尔林从桦树叶中提取出了一种能抑制生长并诱导旺盛生长的枝条进入休眠的物质,他们将其命名为休眠素(dormin)。1965年康福思等从28kg秋天的干槭树叶中得到了260g的休眠素纯结晶,通过与脱落素Ⅱ的分子量、红外光谱和熔点等的比较鉴定,确定休眠素和脱落素Ⅱ是同一物质。1967年在渥太华召开的第六届国际生长物质会议上,这种生长调节物质正式被定名为脱落酸。

(二)ABA的结构特点
ABA是以异戊二烯为基本单位的倍半萜羧酸,化学名称为5-(1′-羟基

(2/3)植物激素?该激素的主要作用是什么?(2)生长素和赤霉素主要是通过促进什么而促进生长?细胞分裂...

(2/3)植物激素?该激素的主要作用是什么?(2)生长素和赤霉素主要是通过促进什么而促进生长?细胞分裂素主要是通过促进什么而促进生长?(3)幼叶
还有一种植物激素是乙烯
乙烯的主要作用:促进果实成熟,促进器官脱落和衰老(原理见参考资料)
生长素促进细胞的分裂与分化、赤霉素是促进促进植物茎伸长
植物激素是指由植物体内产生,能从产生部位运送到作用部位,对植物的生长发育有显著影响的微量有机物。生长素和赤霉素主要是通过促进细胞的纵向伸长生长而促进生长的。细胞分裂素主要是通过促进细胞分裂而促进生长。
(1)植物激素指对植物生长发育其显著调节作用的微量物质。
(2)生长素主要通过促进细胞的伸长;赤霉素既能促进伸长又能促进细胞分裂和分化;而细胞分裂素的;细胞分裂素主要是促进细胞分裂。
植物激素是个总概念,包括生长素赤霉素等,生长素主要促进细胞分裂,赤霉素是形成植株时促进植株的伸长

要怎么样才能加快柚子树的成长

让柚子树成长的时间缩小
植物激素是植物体内合成的32313133353236313431303231363533e78988e69d8331333332633565对植物生长发育有显著作用的几类微量有机物质。也被成为植物天然激素或植物内源激素。

植物激素有五类,即生长素(Auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(ABA)和乙烯(ethyne,ETH)。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样。例如从影响细胞的分裂、伸长、分化到影响植物发芽、生根、开花、结实、性别的决定、休眠和脱落等。所以,植物激素对植物的生长发育有重要的调节控制作用。

植物激素的化学结构已为人所知,有的已可以人工合成,如吲哚乙酸;有的还不能人工合成,如赤霉素。目前市场上售出的赤霉素试剂是从赤霉菌的培养过滤物中制取的。这些外加于植物的吲哚乙酸和赤霉素,与植物体自身产生的吲哚乙酸和赤霉素在来源上有所不同,所以作为植物生长调节剂,也有称为外源植物激素。
最近新确认的植物激素有,茉莉酸(酯)等等
植物体内产生的植物激素有赤霉素、激动素、脱落酸等。现已能人工合成某些类似植物激素作用的物质如2,4-D(2,4-二氯苯酚代乙酚)等。
植物自身产生的、运往其他部位后能调节植物生长发育的微量有机物质。人工合成的具有植物激素活性的物质称为生长调节剂。已知的植物激素主要有以下 5类:生长素、赤霉素、细胞分裂素、脱落酸和乙烯。
生长素 C.D.达尔文在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长素的结晶,经鉴定为吲哚乙酸。促进>橡胶树漆树等排出乳汁。在植物中,则吲哚乙酸通过酶促反应从色氨酸合成。十字花科植物中合成吲哚乙酸的前体为吲哚乙腈,西葫芦中有相当多的吲哚乙醇,也可转变为吲哚乙酸。已合成的生长素又可被植物体内的酶或外界的光所分解,因而处于不断的合成与分解之中。
生长素在低等和高等植物中普遍存在。并使细胞膜的透性增加,在高等植物体内,乙烯可以促进RNA和蛋白质的合成,生长素主要集中在幼嫩、正生长的部位,如禾谷类的胚芽鞘,它的产生具有“自促作用”,双子叶植物的茎顶端、幼叶、花粉和子房以及正在生长的果实、种子等;衰老器官中含量极少。
用胚芽鞘切段证明植物体内的生长素通常只能从植物的上端向下端运输,而不能相反。这种运输方式称为极性运输,能以远快于扩散的速度进行。但从外部施用的生长素类药剂的运输方向则随施用部位和浓度而定,如根部吸收的生长素可随蒸腾流上升到地上幼嫩部位。
低浓度的生长素有促进器官伸长的作用。从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。不同器官对生长素的反应不同,根最敏感,芽次之,茎的敏感性最差。种子中较高的脱落酸含量是种子休眠的主要原因。生长素能促进细胞伸长的主要原因,在于它能使细胞壁环境酸化、水解酶的活性增加,从而使细胞壁的结构松弛、可塑性增加,有利于细胞体积增大。因此是一种生长抑制剂,生长素还能促进 RNA和蛋白质的合成,促进细胞的分裂与分化。它的作用在于抑制 RNA和蛋白质的合成,对于维持顶端优势、促进果实发育,通常在衰老的器官或组织中的含量比在幼嫩部分中的多。生长素也有重要作用。脱落酸存在于植物的叶、休眠芽、成熟种子中。
吲哚乙酸可以人工合成。生产上使用的是人工合成的类似生长素的物质如吲哚丙酸、吲哚丁酸、萘乙酸、2,4-滴、4-碘苯氧乙酸等,可用于防止脱落、促进单性结实、疏花疏果、插条生根、防止马铃薯发芽等方面。愈伤组织容易生芽;反之容易生根。2,在组织培养中当它们的含量大于生长素时,4-滴曾被用做选择性除草剂。细胞分裂素还可促进芽的分化。
赤霉素 1926年日本黑泽在水稻恶苗病的研究中,发现感病稻苗的徒长和黄化现象与赤霉菌(Gibberellafujikuroi)有关。1938年薮田和住木从赤霉菌的分泌物中分离出了有生理活性的物质,定名为赤霉素(GA)。从50年代开始,英、美的科学工作者对赤霉素进行了研究,现已从赤霉菌和高等植物中分离出60多种赤霉素,分别被命名为GA1,GA2等。以后从植物中发现有十多种细胞分裂素,赤霉素广泛存在于菌类、藻类、蕨类、裸子植物及被子植物中。商品生产的赤霉素是GA3、GA4和GA7。GA3又称赤霉酸,是最早分离、鉴定出来的赤霉素,分子式为C19H22O6。即6-呋喃氨基嘌呤。
高等植物中的赤霉素主要存在于幼根、幼叶、幼嫩种子和果实等部位,由甲羟戊酸经贝壳杉烯等中间物合成。后证明其中含有一种能诱导细胞分裂的成分,赤霉素在植物体内运输时无极性,通常由木质部向上运输,由韧皮部向下或双向运输。赤霉素最显著的效应是促进植物茎伸长。无合成赤霉素的遗传基因的矮生品种,用赤霉素处理可以明显地引起茎秆伸长。目前在啤酒工业上多用赤霉素促进a-淀粉酶的产生,赤霉素也促进禾本科植物叶的伸长。在蔬菜生产上,常用赤霉素来提高茎叶用蔬菜的产量。一些需低温和长日照才能开花的二年生植物,
干种子吸水后,用赤霉素处理可以代替低温作用,使之在第1年开花。赤霉素还可促进果实发育和单性结实,打破块茎和种子的休眠,促进发芽。
干种子吸水后,胚中产生的赤霉素能诱导糊粉层内a-淀粉酶的合成和其他水解酶活性的增加,常用赤霉素来提高茎叶用蔬菜的产量。促使淀粉水解,在蔬菜生产上,加速种子发芽。赤霉素也促进禾本科植物叶的伸长。目前在啤酒工业上多用赤霉素促进a-淀粉酶的产生,避免大麦种子由于发芽而造成的大量有机物消耗,从而节约成本。
细胞分裂素 这种物质的发现是从激动素的发现开始的。由韧皮部向下或双向运输。1955年美国人F.斯库格等在烟草髓部组织培养中偶然发现培养基中加入从变质鲱鱼精子提取的DNA,可促进烟草愈伤组织强烈生长。后证明其中含有一种能诱导细胞分裂的成分,称为激动素, 高等植物中的赤霉素主要存在于幼根、幼叶、幼嫩种子和果实等部位,即6-呋喃氨基嘌呤。它在植物中并不存在。但后来发现植物中存在其他具有促进细胞分裂作用的物质,GA<sub>3</sub>又称赤霉酸,总称为细胞分裂素。第一个天然细胞分裂素是1964年D.S.莱瑟姆等从未成熟的玉米种子中分离出来的玉米素。以后从植物中发现有十多种细胞分裂素,GA<sub>2</sub>等。都是腺嘌呤的衍生物。
高等植物细胞分裂素存在于植物的根、叶、种子、果实等部位。根尖合成的细胞分裂素可向上运到茎叶,但在未成熟的果实、种子中也有细胞分裂素形成。细胞分裂素的主要生理作用是促进细胞分裂和防止叶子衰老。定名为赤霉素(GA)。绿色植物叶子衰老变黄是由于其中的蛋白质和叶绿素分解;而细胞分裂素可维持蛋白质的合成,从而使叶片保持绿色,发现感病稻苗的徒长和黄化现象与赤霉菌(Gibberellafujikuroi)有关。延长其寿命。细胞分裂素还可促进芽的分化。在组织培养中当它们的含量大于生长素时,愈伤组织容易生芽;反之容易生根。可用于防止脱落、促进单性结实、疏花疏果、插条生根、防止马铃薯发芽等方面。
人工合成的细胞分裂素苄基腺嘌呤常用于防止莴苣、芹菜、甘蓝等在贮存期间衰老变质。4-滴、4-碘苯氧乙酸等,
脱落酸 60年代初美国人F.T.阿迪科特和英国人P.F.韦尔林分别从脱落的棉花幼果和桦树叶中分离出脱落酸,其分子式为C15H20O4。
吲哚乙酸可以人工合成。脱落酸存在于植物的叶、休眠芽、成熟种子中。生长素也有重要作用。通常在衰老的器官或组织中的含量比在幼嫩部分中的多。它的作用在于抑制 RNA和蛋白质的合成,从而抑制茎和侧芽生长,因此是一种生长抑制剂,有利于细胞体积增大。与赤霉素有拮抗作用。脱落酸通过促进离层的形成而促进叶柄的脱落,在于它能使细胞壁环境酸化、水解酶的活性增加,还能促进芽和种子休眠。种子中较高的脱落酸含量是种子休眠的主要原因。经层积处理的桃、红松等种子,芽次之,因其中的脱落酸含量减少而易于萌发,脱落日夏养花网酸也与叶片气孔的开闭有关。小麦叶片干旱时,保卫细胞内脱落酸含量增加,气孔就关闭,从而可减少蒸腾失水。根尖的向重力性运动与脱落酸的分布有关。

乙烯 早在20世纪初就发现用煤气灯照明时有一种气体能促进绿色柠檬变黄而成熟,这种气体就是乙烯。但直至60年代初期用气相层析仪从未成熟的果实中检测出极微量的乙烯后,乙烯才被列为植物激素。而不能相反。乙烯广泛存在于植物的各种组织、器官中,是由蛋氨酸在供氧充足的条件下转化而成的。它的产生具有“自促作用”,即乙烯的积累可以刺激更多的乙烯产生。乙烯可以促进RNA和蛋白质的合成,在高等植物体内,并使细胞膜的透性增加, 生长素在低等和高等植物中普遍存在。加速呼吸作用。因而果实中乙烯含量增加时,已合成的生长素又可被植物体内的酶或外界的光所分解,可促日夏养花网进其中有机物质的转化,加速成熟。乙烯也有促进器官脱落和衰老的作用。用乙烯处理黄化幼苗茎可使茎加粗和叶柄偏上生长。则吲哚乙酸通过酶促反应从色氨酸合成。乙烯还可使瓜类植物雌花增多,在植物中,促进橡胶树、漆树等排出乳汁。乙烯是气体,1934年荷兰F.克格尔等从人尿得到生长素的结晶,在田间应用不方便。它正是引起胚芽鞘伸长的物质。一种能释放乙烯的液体化合物2-氯乙基膦酸(商品名乙烯利)已广泛应用于果实催熟、棉花采收前脱叶和促进棉铃开裂吐絮、刺激橡胶乳汁分泌、水稻矮化、增加瓜类雌花及促进菠萝开花等。
植物激素对生长发育和生理过程的调节作用,往往不是某一种植物激素的单独效果。能传到茎的伸长区引起弯曲。由于植物体内各种内源激素间可以发生增效或拮抗作用,只有各种激素的协调配合,才能保证植物的正常生长发育。已知的植物激素主要有以下 5类:生长素、赤霉素、细胞分裂素、脱落酸和乙烯。
植物生长抑制素:
=============
它能使茎或枝条的细胞分裂和伸长速度减慢,ZELDtjUJ抑制植株及枝条加长生长。主要有以下几种:
1:b9又叫必久,b995,阿拉,有抑制生长,促进花芽分化,提高抗寒能力,减少生理病害等作用。
2:矮壮素,(ccc)又叫三西,碌化碌代胆碱。纯品为白色结晶,易溶于水,是人工合成的生长延缓剂。它抑制伸长,但 不抑 制细胞分裂,使植株变矮,茎杆变粗,节间变短,叶色深绿 。
3:脱落酸,(aba)是植物体内存在的一种天然抑制剂,广泛存在于植物器官组织中。在将要脱落和休眠的组织器官中含量更高,它与生长素,赤霉素,细胞分裂素的作用是对抗的。它有抑制萌芽和枝条生长提早结束生长的,增强抗寒能力及延长种子休眠等作用。
4:青鲜素(mh)又叫抑芽丹,纯品为白色结晶,微溶于水。它有抑制细胞分裂和伸长提早结束生长,促进枝条成熟,日夏养花网提高抗寒能力等作用。
5:整性素又叫形态素,抑制生长,对抑制发芽作用更为明显,可使植株矮化,破坏顶端优势,促进花芽分化,促进离层形成,抑制植物体内赤霉素的合成等。

文章标签:

本文标题: 植物的生长发育受到多种激素共同的调节,其中赤霉素和生长素都可使植株生长.1926年科学家观察到,当水稻
本文地址: http://www.rixia.cc/wenda/70110.html

上一篇:三角梅叶子全耷拉了怎么办?

下一篇:广东有什么花?

相关推荐

推荐阅读

猜你喜欢

返回顶部