日夏养花网

您好,欢迎访问日夏养花网,我们的网址是:http://www.rixia.cc

如何使风干的绿色植物果实变成红色?

2020-12-17 06:41:14 分类:养花问答 来源: 日夏养花网 作者: 网络整理 阅读:203

植物果实呈现红色、绿色、褐色等不同颜色的原因?

它们细胞液泡的色素有关,液泡中的色素决定水果的颜色
昰质体决定的
质体分为叶绿体、有色体、白色体
植物果实的颜色日夏养花网是质体中的有色体的颜色决定的
【基本内容】
人体基因[2]组图谱好比是一636f707962616964757a686964616f31333332396133张能说明构成每一个人体细胞脱氧核糖核酸(DNA)的30亿个碱基对精确排列的“地图”。科学家们认为,通过对每一个基因的测定,人们将能够找到新的方法来治疗和预防许多疾病,如癌症和心脏病等。该图非常形象地把基因家族的各种基因描绘出来[1]。
[编辑本段]【基因】
基因--有遗传效应的DNA片断,是控制生物性状的基本遗传单位。
人们对基因的认识是不断发展的。19世纪60年代,遗传学家孟德尔就提出了生物的性状是由遗传因子控制的观点,但这仅仅是一种逻辑推理的产物。20世纪初期,遗传学家通过果蝇的遗传实验,认识到基因存在于染色体上,并且在染色体上是呈线性排列,从而得出了染色体是基因载体的结论。
20世纪50年代以后,随着分子遗传学的发展,尤其是沃森和克里克提出双螺旋结构以后,人们才真正认识了基因的本质,即基因是具有遗传效应的DNA片断。研究结果还表明,每条染色体只含有1~2个DNA分子,每个DNA分子上有多个基因,每个基因有含有成百上千个脱氧核苷酸。由于不同基因的脱氧核苷酸的排列顺序(碱基序列)不同,因此,不同的基因就含有不同的遗传信息。1994年中科院曾邦哲提出系统遗传学概念与原理,探讨猫之为猫、虎之为虎的基因逻辑与语言,提出基因之间相互关系与基因组逻辑结构及其程序化表达的发生研究。
[编辑本段]【英文简述】
A gene is a set of segments of nucleic acid that contains the information necessary to produce a functional RNA product in a controlled manner. They contain regulatory regions dictating under what conditions this product is made, transcribed regions dictating the sequence of the RNA product, and/or other functional sequence regions. The physical development and phenotype of organisms can be thought of as a product of genes interacting with each other and with the environment,and genes can be considered as units of inheritance.
[编辑本段]【产生原因推测】
“氨基酸”和“基因”是怎么产生的?
●所有的“原子”和“分子”,总是在“寻找”更“稳定”的状态。于是在远古时期的特殊环境下,“氨基酸”和“基因”的“组合”就是相对“稳定”的状态了,那么这些“分子”当然就会比较容易形成“氨基酸”和“基因”。
●而“基因”所形成的DNA的特殊双螺旋结构,不但可以“复制”繁衍自己,而且还可以与“氨基酸”进行临时的“结合”,从而就像一把“机械手”一样,将各种“氨基酸”重新组合成各种“形状”,而只要不同“性质”的东西,形成了不同的“整体形状”,放在不同的“位置”,就会产生出不同的“功能”,于是“氨基酸”和“基因”的绝配组合,就制造出了各种使“整体”更加“稳定”的“蛋白质”。于是“氨基酸”和“基因”就成了稳定的“共存”状态。
●出自“全集然文明X档案”
[编辑本段]【基因特点】
基因有两个特点,一是能忠实地复制自己,以保持生物的基本特征;二是基因能够“突变”,突变绝大多数会导致疾病,另外的一小部分是非致病突变。非致病突变给自然选择带来了原始材料,使生物可以在自然选择中被选择出最适合自然的个体。
含特定遗传信息的核苷酸序列,是遗传物质的最小功能单位。除某些病毒的基因由核糖核酸(RNA)构成以外,多数生物的基因由脱氧核糖核酸(DNA)构成,并在染色体上作线状排列。基因一词通常指染色体基因。在真核生物中,由于染色体都在细胞核内,所以又称为核基因。位于线粒体和叶绿体等细胞器中的基因则称为染色体外基因、核外基因或细胞质基因,也可以分别称为线粒体基因、质粒和叶绿体基因。
在通常的二倍体的细胞或个体中,能维持配子或配子体正常功能的最低数目的一套染色体称为染色体组或基因组,一个基因组中包含一整套基因。相应的全部细胞质基因构成一个细胞质基因组,其中包括线粒体基因组和叶绿体基因组等。原核生物的基因组是一个单纯的DNA或RNA分子,因此又称为基因带,通常也称为它的染色体。
基因在染色体上的位置称为座位,每个基因都有自己特定的座位。凡是在同源染色体上占据相同座位的基因都称为等位基因。在自然群体中往往有一种占多数的(因此常被视为正常的)等位基因,称为野生型基因;同一座位上的其他等位基因一般都直接或间接地由野生型基因通过突变产生,相对于野生型基因,称它们www.rixia.cc为突变型基因。在二倍体的细胞或个体内有两个同源染色体,所以每一个座位上有两个等位基因。如果这两个等位基因是相同的,那么就这个基因座位来讲,这种细胞或个体称为纯合体;如果这两个等位基因是不同的,就称为杂合体。在杂合体中,两个不同的等位基因往往只表现一个基因的性状,这个基因称为显性基因,另一个基因则称为隐性基因。在二倍体的生物群体中等位基因往往不止两个,两个以上的等位基因称为复等位基因。不过有一部分早期认为是属于复等位基因的基因,实际上并不是真正的等位,而是在功能上密切相关、在位置上又邻接的几个基因,所以把它们另称为拟等位基因。某些表型效应差异极少的复等位基因的存在很容易被忽视,通过特殊的遗传学分析可以分辨出存在于野生群体中的几个等位基因。这种从性状上难以区分的复等位基因称为同等位基因。许多编码同工酶的基因也是同等位基因。
属于同一染色体的基因构成一个连锁群(见连锁和交换)。基因在染色体上的位置一般并不反映它们在生理功能上的性质和关系,但它们的位置和排列也不完全是随机的。在细菌中编码同一生物合成途径中有关酶的一系列基因常排列在一起,构成一个操纵子(见基因调控);在人、果蝇和小鼠等不同的生物中,也常发现在作用上有关的几个基因排列在一起,构成一个基因复合体或基因簇或者称为一个拟等位基因系列或复合基因。
[编辑本段]【认识的发展】
从孟德尔定律的发现到现在,100多年来人们对基因的认识在不断地深化。
1866年,奥地利学者G.J.孟德尔在他的豌豆杂交实验论文中,用大写字母A、B等代表显性性状如圆粒、子叶黄色等,用小写字母a、b等代表隐性性状如皱粒、子叶绿色等。他并没有严格地区分所观察到的性状和控制这些性状的遗传因子。但是从他用这些符号所表示的杂交结果来看,这些符号正是在形式上代表着基因,而且至今在遗传学的分析中为了方便起见仍沿用它们来代表基因。
20世纪初孟德尔的工作被重新发现以后,他的定律又在许多动植物中得到验证。1909年丹麦学者W.L.约翰森提出了基因这一名词,用它来指任何一种生物中控制任何性状而其遗传规律又符合于孟德尔定律的遗传因子,并且提出基因型和表现型这样两个术语,前者是一个生物的基因成分,后者是这些基因所表现的性状。
1910年美国遗传学家兼胚胎学家T.H.摩尔根在果蝇中发现白色复眼 (white eye,W)突变型,首先说明基因可以发生突变,而且由此可以知道野生型基因W+具有使果蝇的复眼发育成为红色这日夏养花网一生理功能。1911年摩尔根又在果蝇的 X连锁基因白眼和短翅两品系的杂交子二代中,发现了白眼、短翅果蝇和正常的红眼长翅果蝇,首先指出位于同一染色体上的两个基因可以通过染色体交换而分处在两个同源染色体上。交换是一个普遍存在的遗传现象,不过直到40年代中期为止,还从来没有发现过交换发生在一个基因内部的现象。因此当时认为一个基因是一个功能单位,也是一个突变单位和一个交换单位。
40年代以前,对于基因的化学本质并不了解。直到1944年 O.T.埃弗里等证实肺炎双球菌的转化因子是DNA,才首次用实验证明了基因是由 DNA构成。
1955年S.本泽用大肠杆菌T4噬菌体作材料,研究快速溶菌突变型rⅡ的基因精细结构,发现在一个基因内部的许多位点上可以发生突变,并且可以在这些位点之间发生交换,从而说明一个基因是一个功能单位,但并不是一个突变单位和交换单位,因为一个基因可以包括许多突变单位(突变子)和许多重组单位(重组子)(见互补作用)。
1969年J.夏皮罗等从大肠杆菌中分离到乳糖操纵子,并且使它在离体条件下进行转录,证实了一个基因可以离开染色体而独立地发挥作用,于是颗粒性的遗传概念更加确立。随着重组DNA技术和核酸的顺序分析技术的发展,对基因的认识又有了新的发展,主要是发现了重叠的基因、断裂的基因和可以移动位置的基因。
[编辑本段]【重叠基因的发现】
重叠基因是在1977年发现的。早在1913年A.H.斯特蒂文特已在果蝇中证明了基因在染色体上作线状排列,50年代对基因精细结构和顺反位置效应等研究的结果也说明基因在染色体上是一个接着一个排列而并不重叠。但是1977年F.桑格在测定噬菌体X174的DNA的全部核苷酸序列时,却意外地发现基因D中包含着基因E。基因E的第一个密码子(见遗传密码)从基因D的中央的一个密码子TAT的中间开始,因此两个部分重叠的基因所编码的两个蛋白质非但大小不等,而且氨基酸也不相同。在某些真核生物病毒中也发现有重叠基因。
断裂的基因也是在1977年发现的,它是内部包含一段或几段最后不出现在成熟的mRNA中的片段的基因。这些不出现在成熟的mRNA中的片段称为内含子,出现在成熟的mRNA中的片段则称为外显子。例如下面这一基因,有三个外显子和两个内含子。在几种哺乳动物的核基因、酵母菌的线粒体基因以及某些感染真核生物的病毒中都发现了断裂的基因。内含子的功用以及转日夏养花网录后的加工机制是真核生物分子遗传学的一个吸引人的课题。
功能、类别和数目到目前为止在果蝇中已经发现的基因不下于1000个,在大肠杆菌中已经定位的基因大约也有1000个,由基因决定的性状虽然千差万别,但是许多基因的原初功能却基本相同。
1945年G.W.比德尔通过对脉孢菌的研究,提出了一个基因一种酶假设,认为基因的原初功能都是决定蛋白质的一级结构(即编码组成肽链的氨基酸序列)。这一假设在http://www.rixia.cc50年代得到充分的验证。
[编辑本段]【人类无用基因推测】
为什么我们人类有“98%”左右的“无用基因”?
为什么我们人类有“98%”左右的“无用基因”,他们是哪里来的?
●我们可以发现有“嘴巴”的动物,就必然会有“配套”的“消化”器官、“排泄”器官,这些器官必然是“同时”出现的,不可能一个一个“慢慢”的“进化”而来,只是“出现”以后,又可以不断的“旋进”而已。
●而所有的“细胞”都是由“基因”控制生长出来的,那么也就是说:它们会有好长一段时间的“基因储备”,有些“储备”也许一直都不会用到,但另一些,最后却整合成了“新”的器官系统。
●另一方面,我们“进化”的过程中,有些功能器官会慢慢退化,如:我们没有了“尾巴”、大部分“体毛”等,而那些相对应的“基因”是不会完全消失的,因为还要留作“备用”!
★这就是“无用基因”的两大“来源”了。当然还有其他的一些原因,如病毒入侵,而后被人体击败,但却会留一些“基因片段”等。
●出自“全集然文明X档案”

什么植物的果实是绿色或红色的,表皮有突起的,呈水滴状?

什么植物的果实是绿色或红色的,表皮有突起的,呈水滴状?

是不是释来迦又叫 番荔枝自

         番荔枝(学名:Annona squamosa),又称bai佛头果、释迦、亚大du果子(还称林檎(zhi广东潮汕地区dao俗称)、唛螺陀(广西)、洋波罗、假波罗(广西凭祥,因其外形与结构都酷似广西特产水果波罗蜜)、番鬼荔枝(广东粤语区、香港、澳门)。台湾地区称乌梨仔。),为番荔枝科番荔枝属多年生半落叶性小乔木植物。多种植做经济作物,果肉白而甜。

      释迦树高3-5m。枝条细软下垂。叶互生,椭圆状披针形,先端短尖或钝,叶背灰绿色,幼时被茸毛,后变秃净。外轮花瓣狭长而肥厚,肉质,长三棱形,顶端尖,被微毛,内轮花瓣细小,呈鳞片状;雌蕊 通常成圆锥或棱锥形突起的雌蕊体;果实为聚合果,心圆锥形或球形,直径5-10cm,浆果由多数心皮聚合而成,心皮在果面形成瘤状突起(跟菠萝有些相像),熟时易分离;假种皮为食用部分,乳白色,味极甜,有芳香。种子黑褐色或深褐色,表面光滑,纺锤形、椭圆形或长卵形。

厦门公园里有一种植物,绿叶,果实圆圆的,开始绿色熟了是红色,这种植物叫什么?

是用作绿篱的植物么?开白色花很香,然后果子是一串一串的,之前是绿色,后来变红。


杨梅

庭院中常见的绿色植物,有红色的果子。请问这是什么植物?

这是南天竹
别名:南天竺,红杷子,天烛子,红枸子,钻石黄,天竹,兰竹;拉内丁文名:Nandina
domestica.属毛容茛目、小檗科下植物,是我国南方常见的木本花卉种类。由于其植株优美,果实鲜艳,对环境的适应性强,常常出现在园林应用中。常见栽培变种有:玉果南天竹,浆果成熟时为白色;绵丝南天竹,叶色细如丝;紫果南天竹,果实成熟时呈淡紫色;圆叶南天竹,叶圆形,且有光泽。因其形态优越清雅,也常被用以制作盆景或盆栽来装饰窗台、门厅、会场等。

文章标签:

本文标题: 如何使风干的绿色植物果实变成红色?
本文地址: http://www.rixia.cc/wenda/69674.html

上一篇:武林群侠传醉棍

下一篇:桂花为什么不香 阅读答案

相关推荐

推荐阅读

猜你喜欢

返回顶部