关于植物与土壤的问题
植物与土壤
下列各项中不可能岩石形成土壤的原因是:( )rnA.风力的作用 B.水流的作用 C.太阳的暴晒 D.生物作用 E.严寒的天气 F.围湖造田 要有详细地解释rn土壤中的腐殖质的主要来源是生物的( )和( )rn土壤是经过漫长的( )和( )过程http://www.rixia.cc才逐渐形成F
代谢物和尸体
第三个不清楚
代谢物和尸体
第三个不清楚
评论 ┆ 举报
最佳答案此答案由提问者自己选择,并不代表百度知道知识人的观点
回答:tingzi
新手
4月4日 20:00 这也可以称为无土栽培,其实里面不仅仅是水,水里面的营养是有限的,更多时候我们可以将一些液态的营养液放入水中,这样有些水养植物就能吸收更多养分,也更容易成活,这种液态的营养在超市也有售,也有是固态的可以溶解于水中。花市上有许多可供水养的植物。
揪错 ┆ 评论 ┆ 举报
最佳答案此答案由提问者自己选择,并不代表百度知道知识人的观点
回答:tingzi
新手
4月4日 20:00 这也可以称为无土栽培,其实里面不仅仅是水,水里面的营养是有限的,更多时候我们可以将一些液态的营养液放入水中,这样有些水养植物就能吸收更多养分,也更容易成活,这种液态的营养在超市也有售,也有是固态的可以溶解于水中。花市上有许多可供水养的植物。
揪错 ┆ 评论 ┆ 举报
在19世纪末,俄国土壤学家道库恰耶夫(V.V.Dokuchaiev)从土壤发生学的观点,认为土壤的性质是气候、生物、地形、母质和时间等成土因素综合作用的结果。
土壤形成因素:
(1)土壤形成的母质因素
风化作用使岩石破碎,理化性质改变,形成结构疏松的风化壳,其上部可称为土壤母质。如果风化壳保留在原地,形成残积物,便称为残积母质;如果在重力、流水、风力、冰川等作用下风化物质被迁移形成崩积物、冲积物、海积物、湖积物、冰碛物和风积物等,则称为运积母质。成土母质是土壤形成的物质基础和植物矿质养分元素(氮除外)的最初来源。母质代表土壤的初始状态,它在气候与生物的作用下,经过上千年的时间,才逐渐转变成可生长植物的土壤。母质对土壤的物理性状和化学组成均产生重要的作用,这种作用在土壤形成的初期阶段最为显著。随着成土过程进行得愈久,母质与土壤间性质的差别也愈大,尽管如此,土壤中总会保存有母质的某些特征。
首先,成土母质的类型与土壤质地关系密切。不同造岩矿物的抗风化能力差别显著,其由大到小的顺序大致为:石英→白云母→钾长石→黑云母→钠长石→角闪石→辉石→钙长石→橄榄石。因此,发育在基性岩母质上的土壤质地一般较细,含粉砂和粘粒较多,含砂粒较少;发育在石英含量较高的酸性岩母质上的土壤质地一般较粗,即含砂粒较多而含粉砂和粘粒较少。此外,发育在残积物和坡积物上的土壤含石块较多,而在洪积物和冲积物上发育的土壤具有明显的质地分层特征。
其次,土壤的矿物组成和化学组成深受成土母质的影响。不同岩石的矿物组成有明显的差别,使其上发育的土壤的矿物组成也就不同。发育在基性岩母质上的土壤,含角闪石、辉石、黑云母等深色矿物较多;发育在酸性岩母质上的土壤,含石英、正长石和白云母等浅色矿物较多;其他如冰碛物和黄土母质上发育的土壤,含水云母和绿泥石等粘土矿物较多,河流冲积物上发育的土壤亦富含水云母,湖积物上发育的土壤中多蒙脱石和水云母等粘土矿物。从化学组成方面看,基性岩母质上的土壤一般铁、锰、镁、钙含量高于酸性岩母质上的土壤,而硅、钠、钾含量则低于酸性岩母质上的土壤,石灰岩母质上的土壤,钙的含量最高。
(2)土壤形成的www.rixia.cc气候因素
气候对于土壤形成的影响,表现为直接影响和间接影响两个方面。直接影响指通过土壤与大气之间经常进行的水分和热量交换,对土壤水、热状况和土壤中物理、化学过程的性质与强度的影响。通常温度每增加10℃,化学反应速度平均增加1~2倍;温度从0℃增加到50℃,化合物的解离度增加7倍。在寒冷的气候条件下,一年中土壤冻结达几个月之久,微生物分解作用非常缓慢,使有机质积累起来;而在常年温暖湿润的气候条件下,微生物活动旺盛,全年都能分解有机质,使有机质含量趋于减少。
气候还可以通过影响岩石风化过程以及植被类型等间接地影响土壤的形成和发育。一个显著的例子是,从干燥的荒漠地带或低温的苔原地带到高温多雨的热带雨林地带,随着温度、降水、蒸发以及不同植被生产力的变化,有机残体归还逐渐增多,化学与生物风化逐渐增强,风化壳逐渐加厚 。
(3)土壤形成的生物因素
生物是土壤有机物质的来源和土壤形成过程中最活跃的因素。土壤的本质特征——肥力的产生与生物的作用是密切相关的。在生物作用下从岩石到土壤的形成过程见图9-7。
岩石表面在适宜的日照和湿度条件下滋生出苔薛类生物,它们依靠雨水中溶解的微量岩石矿物质得以生长,同时产生大量分泌物对岩石进行化学、生物风化;随着苔藓类的大量繁殖,生物与岩石之间的相互作用日益加强,岩石表面慢慢地形成了土壤;此后,一些高等植物在年幼的土壤上逐渐发展起来,形成土体的明显分化。
在生物因素中,植物起着最为重要的作用。绿色植物有选择地吸收母质、水体和大气中的养分元素,并通过光合作用制造有机质,然后以枯枝落叶和残体的形式将有机养分归还给地表。不同植被类型的养分归还量与归还形式的差异是导致土壤有机质含量高低的根本原因。例如,森林土壤的有机质含量一般低于草地,这是因为草类根系茂密且集中在近地表的土壤中,向下则根系的集中程度递减,从而为土壤表层提供了大量的有机质,而树木的根系分布很深,直接提供给土壤表层的有机质不多,主要是以落叶的形式将有机质归还到地表。动物除以排泄物、分泌物和残体的形式为土壤提供有机质,并http://www.rixia.cc通过啃食和搬运促进有机残体的转化外,有些动物如蚯蚓、白蚁还可通过对土体的搅动,改变土壤结构、孔隙度和土层排列等。微生物在成土过程中的主要功能是有机残体的分解、转化和腐殖质的合成。
(4)土壤形成的地形因素
地形对土壤形成的影响主要是通过引起物质、能量的再分配而间接地作用于土壤的。在山区,由于温度。降水和湿度随着地势升高的垂直变化,形成不同的气候和植被带,导致土壤的组成成分和理化性质均发生显著的垂直地带分化。对美国西南部山区土壤特性的考察发现,土壤有机质含量、总孔隙度和持水量均随海拔高度的升高而增加,而pH值随海拔高度的升高而降低[1]。此外,坡度和坡向也可改变水、热条件和植被状况,从而影响土壤的发育。在陡峭的山坡上,由于重力作用和地表径流的侵蚀力往往加速疏松地表物质的迁移,所以很难发育成深厚的土壤;而在平坦的地形部位,地表疏松物质的侵蚀速率较慢,使成土母质得以在较稳定的气候、生物条件下逐渐发育成深厚的土壤。阳坡由于接受太阳辐射能多于阴坡,温度状况比阴坡好,但水分状况比阴坡差,植被的覆盖度一般是阳坡低于阴坡,从而导致土壤中物理、化学和生物过程的差异。
(5)土壤形成的时间因素
在上述各种成土因素中,母质和地形是比较稳定的影响因素,气候和生物则是比较活跃的影响因素,它们在土壤形成中的作用随着时间的演变而不断变化。因此,土壤是一个经历着不断变化的自然实体,并且它的形成过程是相当缓慢的。在酷热、严寒、干旱和洪涝等极端环境中,以及坚硬岩石上形成的残积母质上,可能需要数千年的时间才能形成土壤发生层,例如在沙丘土中,特别是在林下,典型灰壤的发育需要1000~1500年。但在变化比较缓和的环境条件中,以及利于成土过程进行的疏松成土母质上,土壤剖面的发育要快得多。
土壤发育时间的长短称为土壤年龄。从土壤开始形成时起直到目前为止的年数称为绝对年龄。例如,北半球现存的土壤大多是在第四纪冰川退却后形成和发育的。高纬地区冰碛物上的土壤绝对年龄一般不超过一万年,低纬未受冰川收用地区的土壤绝对年龄可能达到数十万年至百万年,其起源可追溯到第三纪。
由土壤的发育阶段和发育程度所决定的土壤年龄称为相对年龄。在适宜的条件下,成土母质首先在生物的作用下进入幼年土壤发育阶段,这一阶段的特点是土体很薄,有机质在表土积累,化学-生物风化作用与淋溶作用很弱,剖面分化为A层和C层,土壤的性质在很大程度上还保留着母质的特征。随着B层的形成和发育,土壤进入成熟阶段,这一阶段有机质积累旺盛,易风化的矿物质强烈分解,在淀积层中粘粒大量积聚,土壤肥力和自然生产力均达到最高水平。经过相当长的时间以后,成熟土壤出现强烈的剖面分化,出现E层,并使A层和B层的特征发生显著差异,有机质累积过程减弱,矿物质分解进入最后阶段,只有抗风化最强的矿物残留在土体中,淀积层中粘粒积聚形成粘盘,土壤进入老年阶段,这一阶段土壤的肥力和自然生产力都明显降低。
(6)土壤形成的人类因素
在五大自然成土因素之外,人类生产活动对土壤形成的影响亦不容忽视,主要表现在通过改变成土因素作用于土壤的形成与演化。其中以改变地表生物状况的影响最为突出,典型例子是农业生产活动,它以稻、麦、玉米、大豆等一年生草本农作物代替天然植被,这种人工栽培的植物群落结构单一,必须在大量额外的物质、能量输入和人类精心的护理下才能获得高产。因此,人类通过耕耘改变土壤的结构、保水性、通气性;通过灌溉改变土壤的http://www.rixia.cc水分、温度状况;通过农作物的收获将本应归还土壤的部分有机质剥夺,改变土壤的养分循环状况;再通过施用化肥和有机肥补充养分的损失,从而改变土壤的营养元素组成、数量和微生物活动等。最终将自然土壤改造成为各种耕作土壤。人类活动对土壤的积极影响是培育出一些肥沃、高产的耕作土壤,如水稻土等;同时由于违反自然成土过程的规律,人类活动也造成了土壤退化如肥力下降、水土流失、盐渍化、沼泽化、荒漠化和土壤污染等消极影响。
成土因素学说的基本观点可概括为:
①土壤是一种独立的自然体,它是在各种成土因素非常复杂的相互作用下形成的。
②对于土壤的形成来说,各种成土因素具有同等重要性和相互不可替代性。其中生物起着主导作用。土壤是一定时期内,在一定的气候和地形条件下,活有机体作用于成土母质而形成的。
=========================
土壤形成过程
土壤的本质是肥力,因此,土壤的形成过程主要是土壤肥力发生与发展的过程。结合上节对成上因素的分析,本节从动态的角度来考察土壤形成的一般规律和具体成土过程。
(1)土壤形成的一般规律
从地球系统物质循环的观点来看,土壤肥力的发生与发展是自然界物质的地质大循环与生物小循环相互作用的结果。地质大循环是指矿物质养分在陆地和海洋之间循环变化的过程。陆地上的岩石经风化作用产生的风化产物,通过各种外力作用的淋溶、剥蚀、搬运,最终沉积在低洼的湖泊和海洋中,并经过固结成岩作用形成各种沉积岩;经过漫长的地质年代,这些湖泊、海洋底层的沉积岩随着地壳运动重新隆起成为陆地岩石,再次经受风化作用。这种物质循环的周期大约在106~108年。其中以岩石的风化过程和风化产物的淋溶过程与土壤形成的关系最为密切。风化过程在土壤形成中的作用主要表现为原生矿物的分解和次生粘土矿物的合成。前者使矿物分解为较简单的组分,并产生可溶性物质,释放出养分元素,为绿色植物的出现准备了条件;后者使风化壳中增加了活跃的新组分,从而具有一定的养分和水分的吸收保蓄能力,为土壤的形成奠定了无机物质的基础。可见,风化过程对土壤来说,是一种物质输入过程。淋溶过程使有效养分向土壤下层和土体以外移动,而不是集中在表层,具有促进土壤物质更新和土壤剖面发育的作用。对于土壤来说,它是一种物质转移和输出过程。
生物小循环又称为养分循环,指营养元素在生物体和土壤之间循环变化的过程。植物从母质和土壤中选择吸收所需的可溶性养分,通过光合作用合成有机体;植物被动物食用后变成动物有机体;植物、动物有机体死亡后归还土壤,经微生物分解与合成转化为植物可以吸收的可溶性养分和腐殖质,腐殖质经过缓慢的矿质化,也为植物提供养分。这种物质循环的周期较短,一般为1~102年。其中有机质的累积、分解和腐殖质的合成促进了植物营养元素在土壤表层的集中和积累,成为土壤肥力形成与发展的关键。
从地球发展史来看,生物的出现较晚,因此,生物小循环是在地质大循环基础上发展起来的,是叠加在地质大循环上的较小时间尺度的次级物质循环。从对于土壤形成的作用上看,地质大循环的总趋势是陆地物质的流失,造成土壤系统养分的淋溶分散,而生物小循环的总趋势是使流失中的物质保存和集中在地表,并不断在土壤与生物之间循环利用。一般来说,如果风化作用和有机质的累积、分解与腐殖质合成作用较强,而淋溶作用较弱,土壤中养分保存多,肥力水平将逐渐提高;如果风化作用和有机质的累积、分解与腐殖质合成作用较弱,而淋溶作用较强,土壤中养分保存少,肥力水平将逐渐降低;当两种作用势均力敌时,土壤肥力的发展处于动态平衡状态。此外,人类的各种生产活动如砍伐森林、耕垦草原、围湖围海造田、开采矿产、城市建设等都会对地质大循环和生物小循环产生干扰,从而影响一个地方土壤肥力的发展方向与平衡。
(2)土壤形成的主要过程
土壤形成的一般规律适用于各种土壤,然而,由于地球表面成土条件的多种多样,不同土壤类型的形成又有其特殊的成土过程,现结合我国的具体情况,选择几种主要的成土过程予以介绍。
原始土壤形成过程 是从裸露岩石表面及其风化物上低等植物着生到高等植物定居之前形成土壤的过程。包括着生蓝藻、绿藻、甲藻、硅藻等岩生微生物的“岩漆”阶段,地衣阶段和苔藓阶段。在这三个阶段的发展中,细土和有机质不断增多,为高等植物的生长准备了肥沃的基质。这一成土过程主要发生在高山区。
盐渍化形成过程 由地表季节性的积盐和脱盐两个方向相反的过程构成,主要发生在干旱、半干旱地区和滨海地区,可分为盐化和碱化两种过程。盐化过程指地表水、地下水和母质中的易溶性盐分,在强烈的蒸发作用下,通过土体中毛管水的垂直和水平移动,逐渐向地表积聚的过程;碱化过程是交换性钠不断进入土壤胶体的过程,其前提是土壤溶液中钠离子的浓度较高,它使土壤呈强碱性反应,并形成碱化层。
钙积过程 是干旱、半干旱地区土壤碳酸盐发生移动和积累的过程。在季节性淋溶条件下,降水将易溶性盐类从土体中淋失,而钙、镁只部分淋失,部分仍残留在土壤中。因此,土壤胶体表http://www.rixia.cc面和土壤溶液中被钙或镁所饱和,在雨季向下移动的钙淀积在剖面的中部或下部,形成钙积层。
粘化过程 是土壤剖面中粘粒形成和积累的过程,主要发生在温暖、湿润的暖温带和北亚热带气候条件下。由于那里化学风化作用盛行,使原生矿物强烈分解,次生粘土矿物大量形成,表层的粘土矿物向下淋溶和淀积,形成淀积粘化土层。
白浆化过程 是在季节性还原淋溶条件下,粘粒与铁、锰淋溶淀积的过程,主要发生在冷湿的气候条件下。在地下水季节性浸润的土壤表层,铁、锰与粘粒随水流失或向下移动,在腐殖质层(或耕层)下形成粉砂量高,而铁、锰贫乏的白色淋溶层;在剖面中、下部则形成铁、锰和粘粒富集的淀积层。
富铝化过程 是土体中脱硅、富铝铁的过程。在热带、亚热带高温多雨的气候条件下,风化产物和土体中的硅酸盐类矿物被强烈水解,释放出盐基物质,产生弱碱性条件,可溶性盐类、碱金属(周期表第Ⅰ族的主族元素,如钠、钾,它们的氢氧化物易溶于水,呈强碱性)和碱土金属(周期表第Ⅱ族的主族元素,如镁、钙,它们的氧化物都呈碱性)盐基及硅酸大量流失,而铁、铝等元素却在碱性溶液中沉淀,形成土体中铁、铝氧化物的富集,使土体呈红色。
有机质积累过程 是在木本或草本植被覆盖下,土体上部进行的有机质积累过程。它是自然土壤形成中最为普遍的一个成土过程。根据地表植被类型的不同,包括漠土有机质积累过程、草原土有机质积累过程、草甸土有机质积累过程、林下有机质积累过程、高寒草甸有机质积累过程和湿生植被的泥炭积累过程等。
潜育化过程 是土体中发生的还原过程。在长期渍水的条件下,空气缺乏。有机质在嫌气分解过程中产生还原物质,高价铁、锰转化为亚铁和亚锰,形成一个蓝灰色或青灰色的还原层次,称为潜育层。
灰化过程 是土体表层SiO2残留,Al2O3和Fe2O3淋溶、淀积的过程。在寒带或寒温带针叶林植被下,由于凋落物富含单宁和树脂类物质,在真菌作用下生成有机酸,它使原生矿物和次生矿物强烈分解。伴随着有机酸溶液的下渗,土体上部的碱金属和碱土金属淋失,难溶的Al2O3和Fe2O3也从表层下移,淀积于下部,只有极耐酸的SiO2残留在土体上部,形成一个强酸性的灰白色淋溶层,称为灰化层。
土壤熟化过程 是在耕作条件下,通过耕耘、培肥和改良,促进水、肥、气、热诸因素不断谐调,使土壤向有利于作物高产方面转化的过程。通常把种植旱作条件下的定向培肥土壤过程称为旱耕熟化过程;把淹水耕作,在氧化还原交替条件下的定向培肥土壤过程称为水耕熟化过程。
土壤形成因素:
(1)土壤形成的母质因素
风化作用使岩石破碎,理化性质改变,形成结构疏松的风化壳,其上部可称为土壤母质。如果风化壳保留在原地,形成残积物,便称为残积母质;如果在重力、流水、风力、冰川等作用下风化物质被迁移形成崩积物、冲积物、海积物、湖积物、冰碛物和风积物等,则称为运积母质。成土母质是土壤形成的物质基础和植物矿质养分元素(氮除外)的最初来源。母质代表土壤的初始状态,它在气候与生物的作用下,经过上千年的时间,才逐渐转变成可生长植物的土壤。母质对土壤的物理性状和化学组成均产生重要的作用,这种作用在土壤形成的初期阶段最为显著。随着成土过程进行得愈久,母质与土壤间性质的差别也愈大,尽管如此,土壤中总会保存有母质的某些特征。
首先,成土母质的类型与土壤质地关系密切。不同造岩矿物的抗风化能力差别显著,其由大到小的顺序大致为:石英→白云母→钾长石→黑云母→钠长石→角闪石→辉石→钙长石→橄榄石。因此,发育在基性岩母质上的土壤质地一般较细,含粉砂和粘粒较多,含砂粒较少;发育在石英含量较高的酸性岩母质上的土壤质地一般较粗,即含砂粒较多而含粉砂和粘粒较少。此外,发育在残积物和坡积物上的土壤含石块较多,而在洪积物和冲积物上发育的土壤具有明显的质地分层特征。
其次,土壤的矿物组成和化学组成深受成土母质的影响。不同岩石的矿物组成有明显的差别,使其上发育的土壤的矿物组成也就不同。发育在基性岩母质上的土壤,含角闪石、辉石、黑云母等深色矿物较多;发育在酸性岩母质上的土壤,含石英、正长石和白云母等浅色矿物较多;其他如冰碛物和黄土母质上发育的土壤,含水云母和绿泥石等粘土矿物较多,河流冲积物上发育的土壤亦富含水云母,湖积物上发育的土壤中多蒙脱石和水云母等粘土矿物。从化学组成方面看,基性岩母质上的土壤一般铁、锰、镁、钙含量高于酸性岩母质上的土壤,而硅、钠、钾含量则低于酸性岩母质上的土壤,石灰岩母质上的土壤,钙的含量最高。
(2)土壤形成的www.rixia.cc气候因素
气候对于土壤形成的影响,表现为直接影响和间接影响两个方面。直接影响指通过土壤与大气之间经常进行的水分和热量交换,对土壤水、热状况和土壤中物理、化学过程的性质与强度的影响。通常温度每增加10℃,化学反应速度平均增加1~2倍;温度从0℃增加到50℃,化合物的解离度增加7倍。在寒冷的气候条件下,一年中土壤冻结达几个月之久,微生物分解作用非常缓慢,使有机质积累起来;而在常年温暖湿润的气候条件下,微生物活动旺盛,全年都能分解有机质,使有机质含量趋于减少。
气候还可以通过影响岩石风化过程以及植被类型等间接地影响土壤的形成和发育。一个显著的例子是,从干燥的荒漠地带或低温的苔原地带到高温多雨的热带雨林地带,随着温度、降水、蒸发以及不同植被生产力的变化,有机残体归还逐渐增多,化学与生物风化逐渐增强,风化壳逐渐加厚 。
(3)土壤形成的生物因素
生物是土壤有机物质的来源和土壤形成过程中最活跃的因素。土壤的本质特征——肥力的产生与生物的作用是密切相关的。在生物作用下从岩石到土壤的形成过程见图9-7。
岩石表面在适宜的日照和湿度条件下滋生出苔薛类生物,它们依靠雨水中溶解的微量岩石矿物质得以生长,同时产生大量分泌物对岩石进行化学、生物风化;随着苔藓类的大量繁殖,生物与岩石之间的相互作用日益加强,岩石表面慢慢地形成了土壤;此后,一些高等植物在年幼的土壤上逐渐发展起来,形成土体的明显分化。
在生物因素中,植物起着最为重要的作用。绿色植物有选择地吸收母质、水体和大气中的养分元素,并通过光合作用制造有机质,然后以枯枝落叶和残体的形式将有机养分归还给地表。不同植被类型的养分归还量与归还形式的差异是导致土壤有机质含量高低的根本原因。例如,森林土壤的有机质含量一般低于草地,这是因为草类根系茂密且集中在近地表的土壤中,向下则根系的集中程度递减,从而为土壤表层提供了大量的有机质,而树木的根系分布很深,直接提供给土壤表层的有机质不多,主要是以落叶的形式将有机质归还到地表。动物除以排泄物、分泌物和残体的形式为土壤提供有机质,并http://www.rixia.cc通过啃食和搬运促进有机残体的转化外,有些动物如蚯蚓、白蚁还可通过对土体的搅动,改变土壤结构、孔隙度和土层排列等。微生物在成土过程中的主要功能是有机残体的分解、转化和腐殖质的合成。
(4)土壤形成的地形因素
地形对土壤形成的影响主要是通过引起物质、能量的再分配而间接地作用于土壤的。在山区,由于温度。降水和湿度随着地势升高的垂直变化,形成不同的气候和植被带,导致土壤的组成成分和理化性质均发生显著的垂直地带分化。对美国西南部山区土壤特性的考察发现,土壤有机质含量、总孔隙度和持水量均随海拔高度的升高而增加,而pH值随海拔高度的升高而降低[1]。此外,坡度和坡向也可改变水、热条件和植被状况,从而影响土壤的发育。在陡峭的山坡上,由于重力作用和地表径流的侵蚀力往往加速疏松地表物质的迁移,所以很难发育成深厚的土壤;而在平坦的地形部位,地表疏松物质的侵蚀速率较慢,使成土母质得以在较稳定的气候、生物条件下逐渐发育成深厚的土壤。阳坡由于接受太阳辐射能多于阴坡,温度状况比阴坡好,但水分状况比阴坡差,植被的覆盖度一般是阳坡低于阴坡,从而导致土壤中物理、化学和生物过程的差异。
(5)土壤形成的时间因素
在上述各种成土因素中,母质和地形是比较稳定的影响因素,气候和生物则是比较活跃的影响因素,它们在土壤形成中的作用随着时间的演变而不断变化。因此,土壤是一个经历着不断变化的自然实体,并且它的形成过程是相当缓慢的。在酷热、严寒、干旱和洪涝等极端环境中,以及坚硬岩石上形成的残积母质上,可能需要数千年的时间才能形成土壤发生层,例如在沙丘土中,特别是在林下,典型灰壤的发育需要1000~1500年。但在变化比较缓和的环境条件中,以及利于成土过程进行的疏松成土母质上,土壤剖面的发育要快得多。
土壤发育时间的长短称为土壤年龄。从土壤开始形成时起直到目前为止的年数称为绝对年龄。例如,北半球现存的土壤大多是在第四纪冰川退却后形成和发育的。高纬地区冰碛物上的土壤绝对年龄一般不超过一万年,低纬未受冰川收用地区的土壤绝对年龄可能达到数十万年至百万年,其起源可追溯到第三纪。
由土壤的发育阶段和发育程度所决定的土壤年龄称为相对年龄。在适宜的条件下,成土母质首先在生物的作用下进入幼年土壤发育阶段,这一阶段的特点是土体很薄,有机质在表土积累,化学-生物风化作用与淋溶作用很弱,剖面分化为A层和C层,土壤的性质在很大程度上还保留着母质的特征。随着B层的形成和发育,土壤进入成熟阶段,这一阶段有机质积累旺盛,易风化的矿物质强烈分解,在淀积层中粘粒大量积聚,土壤肥力和自然生产力均达到最高水平。经过相当长的时间以后,成熟土壤出现强烈的剖面分化,出现E层,并使A层和B层的特征发生显著差异,有机质累积过程减弱,矿物质分解进入最后阶段,只有抗风化最强的矿物残留在土体中,淀积层中粘粒积聚形成粘盘,土壤进入老年阶段,这一阶段土壤的肥力和自然生产力都明显降低。
(6)土壤形成的人类因素
在五大自然成土因素之外,人类生产活动对土壤形成的影响亦不容忽视,主要表现在通过改变成土因素作用于土壤的形成与演化。其中以改变地表生物状况的影响最为突出,典型例子是农业生产活动,它以稻、麦、玉米、大豆等一年生草本农作物代替天然植被,这种人工栽培的植物群落结构单一,必须在大量额外的物质、能量输入和人类精心的护理下才能获得高产。因此,人类通过耕耘改变土壤的结构、保水性、通气性;通过灌溉改变土壤的http://www.rixia.cc水分、温度状况;通过农作物的收获将本应归还土壤的部分有机质剥夺,改变土壤的养分循环状况;再通过施用化肥和有机肥补充养分的损失,从而改变土壤的营养元素组成、数量和微生物活动等。最终将自然土壤改造成为各种耕作土壤。人类活动对土壤的积极影响是培育出一些肥沃、高产的耕作土壤,如水稻土等;同时由于违反自然成土过程的规律,人类活动也造成了土壤退化如肥力下降、水土流失、盐渍化、沼泽化、荒漠化和土壤污染等消极影响。
成土因素学说的基本观点可概括为:
①土壤是一种独立的自然体,它是在各种成土因素非常复杂的相互作用下形成的。
②对于土壤的形成来说,各种成土因素具有同等重要性和相互不可替代性。其中生物起着主导作用。土壤是一定时期内,在一定的气候和地形条件下,活有机体作用于成土母质而形成的。
=========================
土壤形成过程
土壤的本质是肥力,因此,土壤的形成过程主要是土壤肥力发生与发展的过程。结合上节对成上因素的分析,本节从动态的角度来考察土壤形成的一般规律和具体成土过程。
(1)土壤形成的一般规律
从地球系统物质循环的观点来看,土壤肥力的发生与发展是自然界物质的地质大循环与生物小循环相互作用的结果。地质大循环是指矿物质养分在陆地和海洋之间循环变化的过程。陆地上的岩石经风化作用产生的风化产物,通过各种外力作用的淋溶、剥蚀、搬运,最终沉积在低洼的湖泊和海洋中,并经过固结成岩作用形成各种沉积岩;经过漫长的地质年代,这些湖泊、海洋底层的沉积岩随着地壳运动重新隆起成为陆地岩石,再次经受风化作用。这种物质循环的周期大约在106~108年。其中以岩石的风化过程和风化产物的淋溶过程与土壤形成的关系最为密切。风化过程在土壤形成中的作用主要表现为原生矿物的分解和次生粘土矿物的合成。前者使矿物分解为较简单的组分,并产生可溶性物质,释放出养分元素,为绿色植物的出现准备了条件;后者使风化壳中增加了活跃的新组分,从而具有一定的养分和水分的吸收保蓄能力,为土壤的形成奠定了无机物质的基础。可见,风化过程对土壤来说,是一种物质输入过程。淋溶过程使有效养分向土壤下层和土体以外移动,而不是集中在表层,具有促进土壤物质更新和土壤剖面发育的作用。对于土壤来说,它是一种物质转移和输出过程。
生物小循环又称为养分循环,指营养元素在生物体和土壤之间循环变化的过程。植物从母质和土壤中选择吸收所需的可溶性养分,通过光合作用合成有机体;植物被动物食用后变成动物有机体;植物、动物有机体死亡后归还土壤,经微生物分解与合成转化为植物可以吸收的可溶性养分和腐殖质,腐殖质经过缓慢的矿质化,也为植物提供养分。这种物质循环的周期较短,一般为1~102年。其中有机质的累积、分解和腐殖质的合成促进了植物营养元素在土壤表层的集中和积累,成为土壤肥力形成与发展的关键。
从地球发展史来看,生物的出现较晚,因此,生物小循环是在地质大循环基础上发展起来的,是叠加在地质大循环上的较小时间尺度的次级物质循环。从对于土壤形成的作用上看,地质大循环的总趋势是陆地物质的流失,造成土壤系统养分的淋溶分散,而生物小循环的总趋势是使流失中的物质保存和集中在地表,并不断在土壤与生物之间循环利用。一般来说,如果风化作用和有机质的累积、分解与腐殖质合成作用较强,而淋溶作用较弱,土壤中养分保存多,肥力水平将逐渐提高;如果风化作用和有机质的累积、分解与腐殖质合成作用较弱,而淋溶作用较强,土壤中养分保存少,肥力水平将逐渐降低;当两种作用势均力敌时,土壤肥力的发展处于动态平衡状态。此外,人类的各种生产活动如砍伐森林、耕垦草原、围湖围海造田、开采矿产、城市建设等都会对地质大循环和生物小循环产生干扰,从而影响一个地方土壤肥力的发展方向与平衡。
(2)土壤形成的主要过程
土壤形成的一般规律适用于各种土壤,然而,由于地球表面成土条件的多种多样,不同土壤类型的形成又有其特殊的成土过程,现结合我国的具体情况,选择几种主要的成土过程予以介绍。
原始土壤形成过程 是从裸露岩石表面及其风化物上低等植物着生到高等植物定居之前形成土壤的过程。包括着生蓝藻、绿藻、甲藻、硅藻等岩生微生物的“岩漆”阶段,地衣阶段和苔藓阶段。在这三个阶段的发展中,细土和有机质不断增多,为高等植物的生长准备了肥沃的基质。这一成土过程主要发生在高山区。
盐渍化形成过程 由地表季节性的积盐和脱盐两个方向相反的过程构成,主要发生在干旱、半干旱地区和滨海地区,可分为盐化和碱化两种过程。盐化过程指地表水、地下水和母质中的易溶性盐分,在强烈的蒸发作用下,通过土体中毛管水的垂直和水平移动,逐渐向地表积聚的过程;碱化过程是交换性钠不断进入土壤胶体的过程,其前提是土壤溶液中钠离子的浓度较高,它使土壤呈强碱性反应,并形成碱化层。
钙积过程 是干旱、半干旱地区土壤碳酸盐发生移动和积累的过程。在季节性淋溶条件下,降水将易溶性盐类从土体中淋失,而钙、镁只部分淋失,部分仍残留在土壤中。因此,土壤胶体表http://www.rixia.cc面和土壤溶液中被钙或镁所饱和,在雨季向下移动的钙淀积在剖面的中部或下部,形成钙积层。
粘化过程 是土壤剖面中粘粒形成和积累的过程,主要发生在温暖、湿润的暖温带和北亚热带气候条件下。由于那里化学风化作用盛行,使原生矿物强烈分解,次生粘土矿物大量形成,表层的粘土矿物向下淋溶和淀积,形成淀积粘化土层。
白浆化过程 是在季节性还原淋溶条件下,粘粒与铁、锰淋溶淀积的过程,主要发生在冷湿的气候条件下。在地下水季节性浸润的土壤表层,铁、锰与粘粒随水流失或向下移动,在腐殖质层(或耕层)下形成粉砂量高,而铁、锰贫乏的白色淋溶层;在剖面中、下部则形成铁、锰和粘粒富集的淀积层。
富铝化过程 是土体中脱硅、富铝铁的过程。在热带、亚热带高温多雨的气候条件下,风化产物和土体中的硅酸盐类矿物被强烈水解,释放出盐基物质,产生弱碱性条件,可溶性盐类、碱金属(周期表第Ⅰ族的主族元素,如钠、钾,它们的氢氧化物易溶于水,呈强碱性)和碱土金属(周期表第Ⅱ族的主族元素,如镁、钙,它们的氧化物都呈碱性)盐基及硅酸大量流失,而铁、铝等元素却在碱性溶液中沉淀,形成土体中铁、铝氧化物的富集,使土体呈红色。
有机质积累过程 是在木本或草本植被覆盖下,土体上部进行的有机质积累过程。它是自然土壤形成中最为普遍的一个成土过程。根据地表植被类型的不同,包括漠土有机质积累过程、草原土有机质积累过程、草甸土有机质积累过程、林下有机质积累过程、高寒草甸有机质积累过程和湿生植被的泥炭积累过程等。
潜育化过程 是土体中发生的还原过程。在长期渍水的条件下,空气缺乏。有机质在嫌气分解过程中产生还原物质,高价铁、锰转化为亚铁和亚锰,形成一个蓝灰色或青灰色的还原层次,称为潜育层。
灰化过程 是土体表层SiO2残留,Al2O3和Fe2O3淋溶、淀积的过程。在寒带或寒温带针叶林植被下,由于凋落物富含单宁和树脂类物质,在真菌作用下生成有机酸,它使原生矿物和次生矿物强烈分解。伴随着有机酸溶液的下渗,土体上部的碱金属和碱土金属淋失,难溶的Al2O3和Fe2O3也从表层下移,淀积于下部,只有极耐酸的SiO2残留在土体上部,形成一个强酸性的灰白色淋溶层,称为灰化层。
土壤熟化过程 是在耕作条件下,通过耕耘、培肥和改良,促进水、肥、气、热诸因素不断谐调,使土壤向有利于作物高产方面转化的过程。通常把种植旱作条件下的定向培肥土壤过程称为旱耕熟化过程;把淹水耕作,在氧化还原交替条件下的定向培肥土壤过程称为水耕熟化过程。
下列关于植物与土壤的关系说法错误的是
下列关于植物与土壤的关系说法错误的是rnA不同植物对土壤的性状要求不一样rnB植物生长需要土壤提供充足的水分、空气和无机盐rnC不同类型的土壤,人们能根据植物的生长要求种植不用的植物rnD黏土类土壤保肥性能好,所以生活在黏土类土壤中的植物所需肥料少D 原因:黏土类保水保肥是较好,但透气不佳,最主要的是植物所需总肥料量是不会因土壤种类不同而变化.
选择:D
应该是壤土的保肥性能好。
应该是壤土的保肥性能好。
动植物与土壤有什么关系
动植物与土壤有伴生关系。因为无论是植物还是动物,都生活在大自然中,“空间链”把植物与动物连结在一起。加上水、土壤、温度、阳光、空气等非生物因素,构成了地球表面的生物圈。动植物与土壤环境之间不断地进行着物质和能量的交换,从而建立了动态平衡关系。任何生物的生活都离不开有机物和能量。绿色植物可以利用土壤,通过光合作用,把水和二氧化碳合成贮藏能量的有机物,满足人和动物对有机物和能量的生活需求。所以说,,绿色植物是自养生物,人和动物都是异养生物。因此,整个生物界,只有绿色植物才是有机物和能量的生产者,人和动物都是消费者。生产者与消费者之间存在着矛盾和斗争,在生物之间便形成了另一条纽带——“食物链”。
植物与土壤 文章
帮我找几篇植物与土壤的文章rn要很长的rn我办小报用、rnthanks 一.植物与土壤的关系
1. 土壤的生态意义
土壤是岩石圈表面的疏松表层,是陆生植物生活的基质。它提供了植物生活必需的营养和水分,是生态系统中物质与能量交换的重要场所。由于植物根系与土壤之间具有极大的接触面,在土壤和植物之间进行频繁的物质交换,彼此强烈影响,因而土壤是植物的一个重要生态因子,通过控制土壤因素就可影响植物的生长和产量。土壤及时满足植物对水、肥、气、热要求的能力,称为土壤肥力。肥沃的土壤同时能满足植物对水、肥、气、热的要求,是植物正常生长发育的基础。
2. 土壤的物理性质及其对植物的影响
(1)土壤质地和结构 土壤是由固体、液体和气体组成的三相系统,其中固体颗粒是组成土壤的物质基础,约占土壤总重量的85%以上。根据固体颗粒的大小,可以把土粒分为以下几级:粗砂(直径2.0~0.2mm)、细砂(0.2~0.02mm)、粉砂(0.02~0.002mm)和粘粒(0.002mm以下)。这些大小不同的固体颗粒的组合百分比称为土壤质地。土壤质地可分为砂土、壤土和粘土三大类。砂土类土壤以粗砂和细砂为主、粉砂和粘粒比重小,土壤粘性小、孔隙多,通气透水性强,蓄水和保肥性能差,易干旱。粘土类土壤以粉砂和粘粒为主,质地粘重,结构致密,保水保肥能力强,但孔隙小,通气透水性能差,湿时粘、干时硬。壤土类土壤质地比较均匀,其中砂粒、粉砂和粘粒所占比重大致相等,既不松又不粘,通气透水性能好,并具一定的保水保肥能力,是比较理想的农作土壤。
土壤结构是指固体颗粒的排列方式、孔隙和团聚体的数量、大小及其稳定度。它可分为微团粒结构(直径小于0.25mm)、团粒结构(0.25~10mm)和比团粒结构更大的各种结构。团粒结构是土壤中的腐殖质把矿质土粒粘结成0.25~10mm直径的小团块,具有泡水不散的水稳性特点。具有团粒结构的土壤是结构良好的土壤,它能协调土壤中水分、空气和营养物质之间的关系,统一保肥和供肥的矛盾,有利于根系活动及吸取水分和养分,为植物的生长发育提供良好的条件。无结构或结构不良的土壤,土体坚实,通气透水性差,土壤中微生物和动物的活动受抑制,土壤肥力差,不利于植物根系扎根和生长。土壤质地和结构与土壤的水分、空气和温度状况有密切的关系。
(2)土壤水分 土壤水分能直接被植物根系所吸收。土壤水分的适量增加有利于各种营养物质溶解和移动,有利于磷酸盐的水解和有机态磷的矿化,这些都能改善植物的营养状况。土壤水分还能调节土壤温度,但水分过多或过少都会影响植物的生长。水分过少时,植物会受干旱的威胁及缺养;水分过多会使土壤中空气流通不畅并使营养物质流失,从而降低土壤肥力,或使有机质分解不完全而产生一些对植物有害的还原物质。
(3)土壤空气 土壤中空气成分与大气是不同的,且不如大气中稳定。土壤空气中的含氧量一般只有10~12%,在土壤板结或积水、透气性不良的情况下,可降到10%以下,此时会抑制植物根系的呼吸,从而影响植物的生理功能。土壤空气中CO2含量比大气高几十至几百倍,排水良好的土壤中在0.1%左右,其中一部分可扩散到近地面的大气中被植物叶子光合作用时吸收,一部分可直接被根系吸收。但在通气不良的土壤中,CO2的浓度常可达10~15%,这不利于植物根系的发育和种子萌发,CO2的进一步增加会对植物产生毒害作用,破坏根系的呼吸功能,甚至导致植物窒息死亡。土壤通气不良会抑制好气性微生物,减缓有机物的分解活动,使植物可利用的营养物质减少;但若过分通气又会使有机物的分解速率太快,使土壤中腐殖质数量减少,不利于养分的长期供应。
(4)土壤温度 土壤温度具有季节变化、日变化和垂直变化的特点。一般夏季、白天的温度随深度的增加而下降,冬季、夜间相反。但土壤温度在35~100cm以下无昼夜变化,30m以下无季节变化。土壤温度能直接影响植物种子的萌发和实生苗的生长,还影响植物根系的生长、呼吸和吸收能力。大多数作物在10~35℃的范围内生长速度随温度的升高而加快。温带植物的根系在冬季因土温太低而停止生长。土温太高也不利于根系或地下贮藏器官的生长。土温太高或太低都能减弱根系的呼吸能力,如向日葵在土温低于10℃和高于25℃时其呼吸作用都会明显减弱。此外,土温对土壤微生物的活动、土壤气体的交换、水分的蒸发、各种盐类的溶解度以及腐殖质的分解都有显著影响,而这些理化性质与植物的生长有密切关系。
3. 土壤的化学性质对植物的影响
(1)土壤酸碱度 土壤酸碱度是土壤最重要的化学性质,因为它是土壤各种化学性质的综合反映,它与土壤微生物的活动、有机质的合成和分解、各种营养元素的转化与释放及有效性、土壤保持养分的能力都有关系。土壤酸碱度常用pH值表示。我国土壤酸碱度可分为5级:pH<5.0为强酸性,pH5.0~6.5为酸性,pH6.5~7.5为中性,pH7.5~8 .5为碱性,pH>8.5为强碱性。土壤酸碱度对土壤养分有效性有重要影响,在pH6~7的微酸条件下,土壤养分有效性最高,最有利于植物生长。在酸性土壤中易引起P、K、Ca、Mg等元素的短缺,在强碱性土壤中易引起Fe、B、Cu、Mn、Zn等的短缺。土壤酸碱度还能过影响微生物的活动而影响养分的有效性和植物的生长。酸性土壤一般不利于细菌的活动,真菌则较耐酸碱。pH3.5~8.5是大多数维管束植物的生长范围,但其最适生长范围要比此范围窄得多。pH>3或<9时,大多数维管束植物便不能生存。
(2)土壤有机质 土壤有机质是土壤的重要组成部分,它包括腐殖质和非腐殖质两大类。前者是土壤微生物在分解有机质时重新合成的多聚体化合物,约占土壤有机质的85~90%,对植物的营养有重要的作用。土壤有机质能改善土壤的物理和化学性质,有利于土壤团粒结构的形成,从而促进植物的生长和养分的吸收。
(3)土壤中的无机元素。植物从土壤中摄取的无机元素中有13种对其正常生长发育都是不可缺少的(营养元素):N、P、K、S、Ca、Mg、Fe、Mn、Mo、Cl、Cu、Zn、B。植物所需的无机元素主要来自土壤中的矿物质和有机质的分解。腐殖质是无机元素的储备源,通过矿化作用缓慢释放可供植物利用的元素。土壤中必须含有植物所必需的各种元素及这些元素的适当比例,才能使植物生长发育良好,因此通过合理施肥改善土壤的营养状况是提高植物产量的重要措施。
二.植物为土壤“解毒”
春天的风吹来了绿色,也偶然间吹来了我做这个课题的想法。在沈阳郊区踏青时,我发现有一片土地草枯叶黄。出于好奇,我采集了一些土壤。经过化验,“元凶”终于现身,是一种重金属——镉。镉对植物生长极为有害,而且可以长时间累积。冥思苦想之后,我终于找到了解决问题的巧妙途径:在废弃的土壤上种植耐受性强的植物,将土壤中的镉“吸”出来,再把植物收割后回收利用,以此改良土壤。
植物能够富集重金属。培养液略显酸性、有大量有益微生物如有机磷细菌对植物生长有利,而且浑河水竟也可以改善植物生长情况而使镉的总富集量增加!我完成了这次属于自己的创新性学习,找到了一条通向探究神秘自然、奇妙宫然、科学自然的路!
1. 土壤的生态意义
土壤是岩石圈表面的疏松表层,是陆生植物生活的基质。它提供了植物生活必需的营养和水分,是生态系统中物质与能量交换的重要场所。由于植物根系与土壤之间具有极大的接触面,在土壤和植物之间进行频繁的物质交换,彼此强烈影响,因而土壤是植物的一个重要生态因子,通过控制土壤因素就可影响植物的生长和产量。土壤及时满足植物对水、肥、气、热要求的能力,称为土壤肥力。肥沃的土壤同时能满足植物对水、肥、气、热的要求,是植物正常生长发育的基础。
2. 土壤的物理性质及其对植物的影响
(1)土壤质地和结构 土壤是由固体、液体和气体组成的三相系统,其中固体颗粒是组成土壤的物质基础,约占土壤总重量的85%以上。根据固体颗粒的大小,可以把土粒分为以下几级:粗砂(直径2.0~0.2mm)、细砂(0.2~0.02mm)、粉砂(0.02~0.002mm)和粘粒(0.002mm以下)。这些大小不同的固体颗粒的组合百分比称为土壤质地。土壤质地可分为砂土、壤土和粘土三大类。砂土类土壤以粗砂和细砂为主、粉砂和粘粒比重小,土壤粘性小、孔隙多,通气透水性强,蓄水和保肥性能差,易干旱。粘土类土壤以粉砂和粘粒为主,质地粘重,结构致密,保水保肥能力强,但孔隙小,通气透水性能差,湿时粘、干时硬。壤土类土壤质地比较均匀,其中砂粒、粉砂和粘粒所占比重大致相等,既不松又不粘,通气透水性能好,并具一定的保水保肥能力,是比较理想的农作土壤。
土壤结构是指固体颗粒的排列方式、孔隙和团聚体的数量、大小及其稳定度。它可分为微团粒结构(直径小于0.25mm)、团粒结构(0.25~10mm)和比团粒结构更大的各种结构。团粒结构是土壤中的腐殖质把矿质土粒粘结成0.25~10mm直径的小团块,具有泡水不散的水稳性特点。具有团粒结构的土壤是结构良好的土壤,它能协调土壤中水分、空气和营养物质之间的关系,统一保肥和供肥的矛盾,有利于根系活动及吸取水分和养分,为植物的生长发育提供良好的条件。无结构或结构不良的土壤,土体坚实,通气透水性差,土壤中微生物和动物的活动受抑制,土壤肥力差,不利于植物根系扎根和生长。土壤质地和结构与土壤的水分、空气和温度状况有密切的关系。
(2)土壤水分 土壤水分能直接被植物根系所吸收。土壤水分的适量增加有利于各种营养物质溶解和移动,有利于磷酸盐的水解和有机态磷的矿化,这些都能改善植物的营养状况。土壤水分还能调节土壤温度,但水分过多或过少都会影响植物的生长。水分过少时,植物会受干旱的威胁及缺养;水分过多会使土壤中空气流通不畅并使营养物质流失,从而降低土壤肥力,或使有机质分解不完全而产生一些对植物有害的还原物质。
(3)土壤空气 土壤中空气成分与大气是不同的,且不如大气中稳定。土壤空气中的含氧量一般只有10~12%,在土壤板结或积水、透气性不良的情况下,可降到10%以下,此时会抑制植物根系的呼吸,从而影响植物的生理功能。土壤空气中CO2含量比大气高几十至几百倍,排水良好的土壤中在0.1%左右,其中一部分可扩散到近地面的大气中被植物叶子光合作用时吸收,一部分可直接被根系吸收。但在通气不良的土壤中,CO2的浓度常可达10~15%,这不利于植物根系的发育和种子萌发,CO2的进一步增加会对植物产生毒害作用,破坏根系的呼吸功能,甚至导致植物窒息死亡。土壤通气不良会抑制好气性微生物,减缓有机物的分解活动,使植物可利用的营养物质减少;但若过分通气又会使有机物的分解速率太快,使土壤中腐殖质数量减少,不利于养分的长期供应。
(4)土壤温度 土壤温度具有季节变化、日变化和垂直变化的特点。一般夏季、白天的温度随深度的增加而下降,冬季、夜间相反。但土壤温度在35~100cm以下无昼夜变化,30m以下无季节变化。土壤温度能直接影响植物种子的萌发和实生苗的生长,还影响植物根系的生长、呼吸和吸收能力。大多数作物在10~35℃的范围内生长速度随温度的升高而加快。温带植物的根系在冬季因土温太低而停止生长。土温太高也不利于根系或地下贮藏器官的生长。土温太高或太低都能减弱根系的呼吸能力,如向日葵在土温低于10℃和高于25℃时其呼吸作用都会明显减弱。此外,土温对土壤微生物的活动、土壤气体的交换、水分的蒸发、各种盐类的溶解度以及腐殖质的分解都有显著影响,而这些理化性质与植物的生长有密切关系。
3. 土壤的化学性质对植物的影响
(1)土壤酸碱度 土壤酸碱度是土壤最重要的化学性质,因为它是土壤各种化学性质的综合反映,它与土壤微生物的活动、有机质的合成和分解、各种营养元素的转化与释放及有效性、土壤保持养分的能力都有关系。土壤酸碱度常用pH值表示。我国土壤酸碱度可分为5级:pH<5.0为强酸性,pH5.0~6.5为酸性,pH6.5~7.5为中性,pH7.5~8 .5为碱性,pH>8.5为强碱性。土壤酸碱度对土壤养分有效性有重要影响,在pH6~7的微酸条件下,土壤养分有效性最高,最有利于植物生长。在酸性土壤中易引起P、K、Ca、Mg等元素的短缺,在强碱性土壤中易引起Fe、B、Cu、Mn、Zn等的短缺。土壤酸碱度还能过影响微生物的活动而影响养分的有效性和植物的生长。酸性土壤一般不利于细菌的活动,真菌则较耐酸碱。pH3.5~8.5是大多数维管束植物的生长范围,但其最适生长范围要比此范围窄得多。pH>3或<9时,大多数维管束植物便不能生存。
(2)土壤有机质 土壤有机质是土壤的重要组成部分,它包括腐殖质和非腐殖质两大类。前者是土壤微生物在分解有机质时重新合成的多聚体化合物,约占土壤有机质的85~90%,对植物的营养有重要的作用。土壤有机质能改善土壤的物理和化学性质,有利于土壤团粒结构的形成,从而促进植物的生长和养分的吸收。
(3)土壤中的无机元素。植物从土壤中摄取的无机元素中有13种对其正常生长发育都是不可缺少的(营养元素):N、P、K、S、Ca、Mg、Fe、Mn、Mo、Cl、Cu、Zn、B。植物所需的无机元素主要来自土壤中的矿物质和有机质的分解。腐殖质是无机元素的储备源,通过矿化作用缓慢释放可供植物利用的元素。土壤中必须含有植物所必需的各种元素及这些元素的适当比例,才能使植物生长发育良好,因此通过合理施肥改善土壤的营养状况是提高植物产量的重要措施。
二.植物为土壤“解毒”
春天的风吹来了绿色,也偶然间吹来了我做这个课题的想法。在沈阳郊区踏青时,我发现有一片土地草枯叶黄。出于好奇,我采集了一些土壤。经过化验,“元凶”终于现身,是一种重金属——镉。镉对植物生长极为有害,而且可以长时间累积。冥思苦想之后,我终于找到了解决问题的巧妙途径:在废弃的土壤上种植耐受性强的植物,将土壤中的镉“吸”出来,再把植物收割后回收利用,以此改良土壤。
植物能够富集重金属。培养液略显酸性、有大量有益微生物如有机磷细菌对植物生长有利,而且浑河水竟也可以改善植物生长情况而使镉的总富集量增加!我完成了这次属于自己的创新性学习,找到了一条通向探究神秘自然、奇妙宫然、科学自然的路!
文章标签:
本文标题: 关于植物与土壤的问题
本文地址: http://www.rixia.cc/wenda/67424.html
上一篇:弥猴桃种植几年结果 百度
相关推荐