日夏养花网

您好,欢迎访问日夏养花网,我们的网址是:http://www.rixia.cc

植物生理指有哪些

2022-05-02 00:58:59 分类:养花问答 来源: 日夏养花网 作者: 网络整理 阅读:83

植物的生理指标主要是指哪些?

生长发育:1 叶水势,2 叶片相对膨压,3 光合作用 ,4 气孔导度和蒸腾速率,5 叶面积和叶面积指数(LAI) ,6 渗透调节物质,

品质:
于结荚期和饱果期取主茎倒3 叶测定叶片叶绿素含量等生理指标,考察不同处理花生结果情况、植株性状和干物质积累情况;于开花后40 d (幼果)、55 d (秕果)和 70 d (饱果)挑选发育一致的荚果 10 个烘干、保存,以备测定籽仁蛋白质含量、粗脂肪含量、脂肪酸组分及含量、油酸/亚油酸比、氨基酸组分及含量、可溶性糖含量。于收获期(9 月 20 日)选有代表性地段收获荚果,自然风干,用于调查荚果产量、单株结果数、公斤果数、公斤仁数和出仁率。

植物的生理过程是什么

植物的生理过程是什么
植物生理学其目的在于认识植物的物质代谢、能量转化和生长发育等的规律与机理、调节与控制以及植物体内外环境条件对其生命活动的影响。包括光合作用、植物代谢、植物呼吸、植物水分生理、植物矿质营养、植物体内运输、生长与发育、抗逆性和植物运动等研究内容。

光合作用
①光合作用。绿色植物的特殊功能。它们有光合色素,能吸收太阳光。色素在 光合作用
受激发后发生电荷分离,电子经过一系列的载体传递后,引起氧化还原反应:在一端分解水分子,放出氧气;另一端还原辅酶Ⅱ,同时造成质子(氢离子)转移,形成叶绿体中类囊体膜内外的电位差和氢离子浓度差,推动腺苷三磷酸(ATP)的合成。这样 ,将光能转变成还原辅酶Ⅱ与ATP中的化学能,最后经过一系列的酶反应,把从空气中吸入的CO2固定并还原成碳水化合物。
植物代谢
②植物代谢。可以分为两大方面 ,一方面是合成代谢——将光合作用产生的比较简单的有机物通过一系列酶反应,组成更复杂的包括大分子的有机物如蛋白质,核酸、酶、纤维素等,构成植物身体的组成部分;或贮存物如淀粉、蔗糖、油脂,以供其生命活动中所需的能量。另一方面是分解代谢——把大分子的物质水解(或磷酸解)成为简单的http://www.rixia.cc糖磷酯 ,再经过糖酵解形成丙酮酸,同时产生少量的ATP和还原的辅酶(NADH或NADPH)。
植物呼吸
③植物呼吸。同动物一样,植物也进行呼吸,但没有像鳃、肺那样专门进行气体交换的呼吸器官。分解代谢所形成的还原的辅酶或几种简单的有机酸,经过一系列的电子传递(呼吸链),最后把吸入的氧气还原成水。电子传递和末端氧化是在线粒体内进行的。电子传递同时偶联着ATP的形成,供应各种生命活动的能量需要。
植物水分生理
④植物水分生理。植物的生活需要大量的水分,其中只有一小部分用于光合作用和代谢过程,绝大部分是在阳光照射下,气孔(器)开放、进行光合作用时,从叶面蒸发出去的。陆生植物适应于蒸腾作用对水分的需求,演化出各种结构。由发达的根系从土壤中吸收水分,通过木质部的导管或管胞输送到地上部的叶和其他器官。进入大气时所经过的气孔能控制水分的散失。在干旱地区的植物,http://www.rixia.cc更有减少蒸腾的特殊构造和代谢方式。
植物矿质营养
⑤植物矿质营养。除CO2和水外,植物还需要多种化学元素。需要量较大的氮(N)、磷(P)、钾(K),是农业上常需以肥料形式施加的元素。需要量次之的为钙(Ca)、硫(S)、镁(Mg)、铁(Fe),是构成植物体内生活物质包括某些酶的必要成分。此外还需一些微量元素,如锰(Mn)、锌(Zn)、硼(B)、铜(Cu)、钼(Mo)等。
植物体内运输
⑥植物体内运输 。植物没有血液循环系统 ,但制造有机物质的光合器官(叶子)位于地上,吸收土壤中无机养料和水分的根系处于地下,生殖器官(花、种子、果实)等则要从两者取得营养物质的供应。适应地上部与地下部之间和各种器官之间物质运输的需要,植物演化出两种特殊的通道,即主要输送水和溶于其中的矿质元素的木质部,和主要输送有机物的韧皮部中的筛管。
生长与发育
⑦生长与发育。生长主要是通过细胞的分裂和膨大,发育是通过细胞的分化而形成不同的组织和器官。植物的生长发育受内在因素和外界环境的制约,具有一定的阶段性和季节性。在寒、暖、雨、旱季节变化明显的地区的植物常有休眠期。种子多在冬季或旱季到来之前形成,在休眠状态下度过不良环境。从营养生长(叶、茎、根的生长)向生殖生长(分化花芽、开花、结实)转化的过程常与自然环境的年度变化相偶合。植物有一系列感受环境变化的机制,光周期现象是其中之一。植物的细胞具有很大的全能性,身体许多部分的细胞,离体后在人工培养基中,都可以脱分化而长成愈伤组织。在适当的情况下,又可以再分化,形成根、茎、叶等器官以至长成完整的植株。
植物激素
⑧植物激素。植物没有神经系统,各器官间的生理活动,除随营养物的供求关系相互制约以外,大都是通过一些特殊的化学物质来相互调节和控制的。这种化学物质称为植物激素,它们在某些部位形成,转移到另一些部位起作用。如最先发现的生长素就是在生长顶端形成,促进下面的细胞伸长。随后相继发现许多其他激素,如脱落酸、赤霉素、细胞分裂素、乙烯。除去通过化学物质而调节控制之外,植物中也能有迅速的物理的信息传导,如电位的变化。
抗逆性
⑨抗逆性。不同植物对不良环境的耐性和抗性的差异很大,有的能在极干旱的条件下生存,有的能抵抗低温。品种之间的差异也很大,在自然界中,不同生境中植物的分布很大程度上是由它们对不良环境的抗御能力决定的。在农业生产上,扩大作物的种植,了解抗逆性的生理机理,有助于采取措施以提高抗逆性,或为育种工作中抗逆品种的筛选提供生理指标。
植物运动
⑩植物运动。生活在水中的低等植物,有些具有特殊器官如鞭毛,可以游泳,作趋光运动。陆生植物虽然着生位置固定,却并非完全不能运动。根有向地(重力)性,叶子有向光性,是通过生长来运动,称为生长运动。有些植物能做机械运动,如睡莲的花昼开夜合;合欢的复叶晚间闭拢;含羞草和食虫植物猪笼草等,动作更为迅速。

具体见植物生理学
no

植物都有哪些生理现象谢谢

光合作用,吐水,蒸腾,烧苗等现象
营养生长和生殖生长,即种子发芽-生长-开花结果-种子发芽。
五、解释现象
1.植物在纯水中培养一段时间后,如果向培养植物的水中加入盐,则植物会出现暂时萎蔫。
答:盐降低了溶液中的溶质势,引起植物失水,出现暂时萎蔫现象,当达到平衡后,萎蔫现象会消失。
2.午不浇园
答:在炎热的夏日中午,突然向植物浇以冷水,会降低根系生理活性,增加水分移动的阻力,严重地抑制根系的水分吸收,同时,又因为地上部分蒸腾强烈,使植物吸水速度低于水分散失速度,造成植物地上部分水分亏缺。所以我国农民有"午不浇园"的经验。
3.“旱耪地,涝日夏养花网浇园”
答:“旱耪地”是为了使土壤形成团粒结构,增强土壤的保水本领,避免土壤中的水分因蒸腾而散失掉;“涝浇园”是因为在受涝的情况下,土壤中的水分多为“死水”,缺乏氧气,用“活水”浇园就可以改善土壤的通气状况。
4. 夏季中午瓜类叶片萎蔫。
答: 夏季中午的高温,使得植物的蒸腾速率大于根系吸水的速度,植物失去水分平衡,导致植株萎蔫。
5.“烧苗”现象
答:一次施用肥料过多或过于集中,提高土壤中溶液浓度,降低其水势,阻碍根系吸水,甚至导致根细胞水分外流,而产生“烧苗”现象。
6. 扦插枝条常剪去部分老叶片,保留部分幼叶和芽。
答:剪去部分老叶片以减少蒸发面积,降低水分散失;保留的部分幼叶和芽能促进扦插枝条早发根。
7.秋季或初春移栽林木苗易成活。
答:秋季栽植,地温适宜,至冬季时已抽发新根,可安全越冬。初春栽植,温度低,树木尚处于休眠和半休眠,代谢弱,遇春暖花开时易发根。因此秋春移植,利于发根,也就利于成活。
8.在光照下,蒸腾着的枝叶可通过被麻醉或死亡的根吸水便证明了什么。
答:被动吸水过程中,根只为水分进入植物体提供了通道。

5.一个细胞的w为-0.8MPa,在初始质壁分离时的s为-1.6MPa,设该细胞在发生初始质壁分离时比原来体积缩小4%,计算其原来的和p各为多少MPa?
答:根据溶液渗透压的稀释公式,溶质不变时,渗透压与溶液的体积成反比,有下列等式:
1V1=2V2 或 1V1=2V2
原来 100% = 质壁分离 96%
原来= (-1.65MPa96 )/100 = -1.536MPa
P = W -m = -0.8MPa -( -1.536MPa) = 0.736MPa
原来的为-1.536 MPa,日夏养花网 P 为 0.736MPa.
13.植物气孔蒸腾是如何受光、温度、CO2浓度调节的?
答:⑴光 光是气孔运动的主要调节因素。光促进气孔开启的效应有两种,一种是通过光合作用发生的间接效应;另一种是通过光受体感受光信号而发生的直接效应。光对蒸腾作用的影响首先是引起气孔的开放,减少内部阻力,从而增强蒸腾作用。其次,光可以提高大气与叶子温度,增加叶内外蒸气压差,加快蒸腾速率。
(2)温度 气孔运动是与酶促反应有关的生理过程,因而温度对蒸腾速率影响很大。当大气温度升高时,叶温比气温高出2~10℃,因而,气孔下腔蒸气压的增加大于空气蒸气压的增加,这样叶内外蒸气压差加大,蒸腾加强。当气温过高时,叶片过度失水,气孔就会关闭,从而使蒸腾减弱。
⑶CO2 CO2对气孔运动影响很大,低浓度CO2促进气孔张开,高浓度CO2能使气孔迅速关闭(无论光下或暗中都是如此)。在高浓度CO2下,气孔关闭可能的原因是:①高浓度CO2会使质膜透性增加,导致K+泄漏,消除质膜内外的溶质势梯度,②CO2使细胞内酸化,影响跨膜质子浓度差的建立。因此CO2浓度高时,会抑制气孔蒸腾。

五、解释现象
1.一些块根(茎)作物施用氮肥太多时,为什么只长秧不长薯块?
氮肥过多,光合作用所产生的碳水化合物大量用于合成蛋白质,促进植株茎秆生长;光合产物在块根(茎)中的积累减少,使其生长抑制。
2.进行溶液培养时,为什么要向溶液中打气,同时还要定期调换新鲜溶液?
向溶液中打气可提高培养液中的含氧量,增加根系的有氧呼吸,为根系主动吸收矿质元素提供充足能量。植物培养一段时间后,由于根系对矿质元素的选择性吸收,导致培养液中各种元素的比例失调,通过定期调换新鲜溶液来维持培养液的平衡性。
3.缺P时,蕃茄苗叶色呈现暗绿色。
缺P初期,叶片呈暗绿色,这是由于缺磷的细胞其生长受影响的程度超过了叶绿素合成所受的影响,单位叶面积上积累的叶绿素多,叶色暗绿。
4.缺Zn时,果树出现“小叶病”或“簇叶病”。
缺锌时,植物体内IAA合成锐减,尤其是芽和茎中的含量明显下降,植物生长发育出现停滞状态,其典型表现是叶片变小,节间缩短等症状,通常称为“小叶病”或“簇叶病”。北方果园苹果、桃、梨等果树在春季易出现此病。
5. 水稻秧苗在栽插后有一个叶色先落黄后返青的过程。
水稻秧苗在栽插初期,由于根系根毛区受损严重,无法大量吸收水分和矿质营养,叶色变黄;随时间推移,水稻根系生长恢复,吸收水分和矿质营养的能力不断提高,植株返青。
6. 叶片中的天冬酰胺或淀粉含量可作为作物施用N 肥的生理指标。
因为当N素供应过量时,某些作物就将多余的N以天冬酰胺的形式贮备起来,这也可消除NH3对植物的毒害作用;某些作物则大量消耗光合产物用以同化N,而用以合成淀粉的光合产物减少,叶中淀粉含量下降。当N素供应不足时,则叶中天冬酰胺的含量很低或难以测出,有的作物由于用于N同化的光合产物减少,结果叶中的淀粉含量增加。正因为某些作物叶片中的天冬酰胺或淀粉的含量随N素丰缺的变化而变化,所以,叶中的天科酰胺或淀粉含量可用为某些作物施用N肥的生理指标。

2.影响植物根部吸收矿质盐的主要因素有哪些?
a. 温度,在一定温度范围内,随土温升高而加快;
b. 通气状况,在一定范围内,氧气代应越好,吸收矿质越多;
c. 溶液浓度,在较低浓度范围内,随浓度升高而吸收增多。

4. 土壤中氮素过多或不足,对植物的生长和发育有何影响?
氮肥过多,光合作用所产生的碳水化合物大量用于合成蛋白质、叶绿素和其它含氮化合物,叶色墨绿,叶大而厚且易披垂、组织柔嫩,贪青晚熟,易倒伏和易感病虫害等。
氮肥不足,阻碍了蛋白质、核酸、磷脂的合成,会造成植物生长缓慢,植株矮小,茎秆纤细,叶小而早衰,分蘖少,籽粒干瘪,根系细长而分支少。由于氮素可重复再利用,因此缺氮症状首先从老叶开始。

五、解释现象
1. 秋末枫叶变红、银杏叶变黄。
秋末气温降低,叶绿素的降解速率大于合成,而类胡萝卜素较为稳定,使叶片变为黄色。枫叶变红是由于花青素合成增加引起的。
2. 蚕豆种植过密,引起落花落荚。
蚕豆种植过密,造成徒长,封行过早,中下层叶子所受的光照往往在光补偿点以下,这些叶子不但不能制造养分,反而消耗养分,变成消费器官。从而使处于下层的花荚因无法获得足够的营养而脱落。
3. 叶腋有花、果实或幼芽的叶片较无花、果实或幼芽的叶片光合速率高。
代谢库对代谢源的调节作用。叶腋存在花、果实或幼芽时,代谢源产生的同化物可顺利输出;而当叶腋的花、果实或幼芽摘除,同化物输出受阻,在叶片上积累,反馈抑制叶片的光合作用。
4. 冬季温室栽培蔬菜避免高温,阴雨天注意补充光照。
由于温室大棚阻光增温效应,冬季温室栽培常出现温度高、光线弱的环境特点。在环境光线相对较弱、温度过高下,植物的光合作用无显著增加,而呼吸作用增加显著,导致呼吸消化明显大于光合同化,不利于同化物在蔬菜营养体中的积累。因此,冬季温室栽培蔬菜避免高温,阴雨天注意补充光照。
5. 作物株型紧凑、叶片较直立,其群体光能利用率高。
种植株型紧凑、叶片较直立的作物,可适当增加密度,减少光线反射损失,提高叶面积系数,因而能提高光能利用率。
6. 大树底下无丰草。
枝叶茂盛的大树下,光线弱,当光照强度低于光补偿点以下时,呼吸消耗大于光合,不利于草的生长;同时,从光质上考虑,对光合作用有利的红光和蓝光被大树叶片大量吸收,漏下来的大部分是对植物光合作用不利的无效光,也不利于草的生长。因此,大树底下无丰草。
7. “树怕伤皮,不怕烂心”。
皮是韧皮部存在的部位www.rixia.cc,有机物质正是通过韧皮部向下运输到根部。树剥皮后,韧皮部被破坏,影响了有机物质的运输,时间一长会影响根系的生长,进而影响地上部分的生长;心为木质部存在部位,水分和矿质营养可通过木质部向上运输。然而废弃木质部心材的腐烂,并不会完全阻断水分的运输,不会对地上部分水分和矿质营养的供应产生影响。因此,树怕伤皮,不怕烂心。
8. 摘掉靠近棉花花蕾的叶片,蕾铃容易脱落。
代谢源是代谢库的供应者,摘掉靠近棉花花蕾的叶片,蕾铃将得不到充足的同化物,蕾铃因“饥饿”而脱落。
9. 水稻抽穗后不宜施氮过多。
b. 通气状况,在一定范围内,氧气代应越好,吸收矿质越多;
c. 溶液浓度,在较低浓度范围内,随浓度升高而吸收增多。

4. 土壤中氮素过多或不足,对植物的生长和发育有何影响?
氮肥过多,光合作用所产生的碳水化合物大量用于合成蛋白质、叶绿素和其它含氮化合物,叶色墨绿,叶大而厚且易披垂、组织柔嫩,贪青晚熟,易倒伏和易感病虫害等。
氮肥不足,阻碍了蛋白质、核酸、磷脂的合成,会造成植物生长缓慢,植株矮小,茎秆纤细,叶小而早衰,分蘖少,籽粒干瘪,根系细长而分支少。由于氮素可重复再利用,因此缺氮症状首先从老叶开始。

五、解释现象
1. 秋末枫叶变红、银杏叶变黄。
秋末气温降低,叶绿素的降解速率大于合成,而类胡萝卜素较为稳定,使叶片变为黄色。枫叶变红是由于花青素合成增加引起的。
2. 蚕豆种植过密,引起落花落荚。
蚕豆种植过密,造成徒长,封行过早,中下层叶子所受的光照往往在光补偿点以下,这些叶子不但不能制造养分,反而消耗养分,变成消费器官。从而使处于下层的花荚因无法获得足够的营养而脱落。
3. 叶腋有花、果实或幼芽的叶片较无花、果实或幼芽的叶片光合速率高。
代谢库对代谢源的调节作用。叶腋存在花、果实或幼芽时,代谢源产生的同化物可顺利输出;而当叶腋的花、果实或幼芽摘除,同化物输出受阻,在叶片上积累,反馈抑制叶片的光合作用。
4. 冬季温室栽培蔬菜避免高温,阴雨天注意补充光照。
由于温室大棚阻光增温效应,冬季温室栽培常出现温度高、光线弱的环境特点。在环境光线相对较弱、温度过高下,植物的光合作用无显著增加,而呼吸作用增加显著,导致呼吸消化明显大于光合同化,不利于同化物在蔬菜营养体中的积累。因此,冬季温室栽培蔬菜避免高温,阴雨天注意补充光照。
5. 作物株型紧凑、叶片较直立,其群体光能利用率高。
种植株型紧凑、叶片较直立的作物,可适当增加密度,减少光线反射损失,提高叶面积系数,因而能提高光能利用率。
6. 大树底下无丰草。
枝叶茂盛的大树下,光线弱,当光照强度低于光补偿点以下时,呼吸消耗大于光合,不利于草的生长;同时,从光质上考虑,对光合作用有利的红光和蓝光被大树叶片大量吸收,漏下来的大部分是对植物光合作用不利的无效光,也不利于草的生长。因此,大树底下无丰草。
7. “树怕伤皮,不怕烂心”。
皮是韧皮部存在的部位,有机物质正是通过韧皮部向下运输到根部。树剥皮后,韧皮部被破坏,影响了有机物质的运输,时间一长会影响根系的生长,进而影响地上部分的生长;心为木质部存在部位,水分和矿质营养可通过木质部向上运输。然而废弃木质部心材的腐烂,并不会完全阻断水分的运输,不会对地上部分水分和矿质营养的供应产生影响。因此,树怕伤皮,不怕烂心。
8. 摘掉靠近棉花花蕾的叶片,蕾铃容易脱落。
代谢源是代谢库的供应者,摘掉靠近棉花花蕾的叶片,蕾铃将得不到充足的同化物,蕾铃因“饥饿”而脱落。
9. 水稻抽穗后不宜施氮过多。
b. 通气状况,在一定范围内,氧气代应越好,吸收矿质越多;
c. 溶液浓度,在较低浓度范围内,随浓度升高而吸收增多。

4. 土壤中氮素过多或不足,对植物的生长和发育有何影响?
氮肥过多,光合作用所产生的碳水化合物大量用于合成蛋白质、叶绿素和其它含氮化合物,叶色墨绿,叶大而厚且易披垂、组织柔嫩,贪青晚熟,易倒伏和易感病虫害等。
氮肥不足,阻碍了蛋白质、核酸、磷脂的合成,会造成植物生长缓慢,植株矮小,茎秆纤细,叶小而早衰,分蘖少,籽粒干瘪,根系细长而分支少。由于氮素可重复再利用,因此缺氮症状首先从老叶开始。

五、解释现象
1. 秋末枫叶变红、银杏叶变黄。
秋末气温降低,叶绿素的降解速率大于合成,而类胡萝卜素较为稳定,使叶片变为黄色。枫叶变红是由于花青素合成增加引起的。
2. 蚕豆种植过密,引起落花落荚。
蚕豆种植过密,造成徒长,封行过早,中下层叶子所受的光照往往在光补偿点以下,这些叶子不但不能制造养分,反而消耗养分,变成消费器官。从而使处于下层的花荚因无法获得足够的营养而脱落。
3. 叶腋有花、果实或幼芽的叶片较无花、果实或幼芽的叶片光合速率高。
代谢库对代谢源的调节作用。叶腋存在花、果实或幼芽时,代谢源产生的同化物可顺利输出;而当叶腋的花、果实或幼芽摘除,同化物输出受阻,在叶片上积累,反馈抑制叶片的光合作用。
4. 冬季温室栽培蔬菜避免高温,阴雨天注意补充光照。
由于温室大棚阻光增温效应,冬季温室栽培常出现温度高、光线弱的环境特点。在环境光线相对较弱、温度过高下,植物的光合作用无显著增加,而呼吸作用增加显著,导致呼吸消化明显大于光合同化,不利于同化物在蔬菜营养体中的积累。因此,冬季温室栽培蔬菜避免高温,阴雨天注意补充光照。
5. 作物株型紧凑、叶片较直立,其群体光能利用率高。
种植株型紧凑、叶片较直立的作物,可适当增加密度,减少光线反射损失,提高叶面积系数,因而能提高光能利用率。
6. 大树底下无丰草。
枝叶茂盛的大树下,光线弱,当光照强度低于光补偿点以下时,呼吸消耗大于光合,不利于草的生长;同时,从光质上考虑,对光合作用有利的红光和蓝光被大树叶片大量吸收,漏下来的大部分是对植物光合作用不利的无效光,也不利于草的生长。因此,大树底下无丰草。
7. “树怕伤皮,不怕烂心”。
皮是韧皮部存在的部位,有机物质正是通过韧皮部向下运输到根部。树剥皮后,韧皮部被破坏,影响了有机物质的运输,时间一长会影响根系的生长,进而影响地上部分的生长;心为木质部存在部位,水分和矿质营养可通过木质部向上运输。然而废弃木质部心材的腐烂,并不会完全阻断水分的运输,不会对地上部分水分和矿质营养的供应产生影响。因此,树怕伤皮,不怕烂心。
8. 摘掉靠近棉花花蕾的叶片,蕾铃容易脱落。
代谢源是代谢库的供应者,摘掉靠近棉花花蕾的叶片,蕾铃将得不到充足的同化物,蕾铃因“饥饿”而脱落。
更多 参考http://wenku.baidu.com/view/54df0b3c376baf1ffc4fad1d.html

植物器官有哪些生理功能

植物化学物质(phytochemicals)是植物中含有的活跃且具有保健作用的物质。被誉为“植物给予人类的礼物”,是近年来人类一大重要发现,其重要意义可与抗生素、维生素的发现相媲美。
一般包括萜类化合物、有机硫化物、类黄酮、植物多糖等。
生理功能主要有:
抗氧化作用、调节免疫力、抑制肿瘤、抗感染、降低胆固醇、延缓衰老等,因此它具有保护人体健康和预防诸如心血管和癌症等慢性病的作用。

植物的生理特性有哪些?

趋光性,根的向地性等,太多了。
问题太大无法具体说。每种植物都有自己的生理特性。

文章标签:

本文标题: 植物生理指有哪些
本文地址: http://www.rixia.cc/wenda/246266.html

上一篇:高三文科生。数学特别差,怎么提高

下一篇:饥荒联机版全系列代码大全 代码怎么使用

相关推荐

推荐阅读

猜你喜欢

返回顶部