随机变量的分布函数为什么是右连续的
为什么随机变量的分布函数Fx右连续不http://www.rixia.cc左连续
分布函数右连续怎么理解?
分布函数右连续说的是任一点x0,它的F(x0+0)=F(x0)即是该点右极限等于该点函数值。因为F(x)是一个单调有界非降函数,所以其任一点x0的右极限必然存在,然后再证右极限和函数值即可。
概率分布函数是概率论的基本概念之一。在实际问题中,常常要研究一个随机变量取值小于某一数值x的概率,这概率是x的函数,称这种函数为随机变量的分布函数,简称分布函数,记作F(x),即F(x)=P(。
分布函数(英文Cumulative Distribution Function,简称CDwww.rixia.ccF),是概率统计中重要的函数,正是通过它,可用数学分析的方法来研究随机变量。
分布函数是随机变量最重要的概率特征,分布函数可以完整地描述随机变量的统计规律,并且决定随机变量的一切其他概率特征。
随机变量的分布函数具有左连续性还是右连续性?
右连续性。
左连续和右连续的区别在于计算F(x)时,X=x点的概率是否计算在内。对于连续型随机变量而言,因为一点上的概率等于零;
对于离散型随机变量,如果P{X=x} ≠0,则左连续和右连续时的F(x)值就不相同了。F(x) = P(X < x),我们看P(X = 0)=1的情况,当x < 0时,F(x) = 0,但是当x >= 0时,F(x) = 1;
扩展资料在做实验时,常常是相对于试验结果本身而言,我们主要还是对结果的某些函数感兴趣。例如,在掷骰子时,我们常常关心的是两颗日夏养花网骰子的点和数,而并不真正关心其实际结果;
就是说,我们关心的也许是其点和数为7,而并不关心其实际结果是否是(1,6)或(2,5)或(3,4)或(4,3)或(5,2)或(6,1)。我们关注的这些量,或者更形式的说,这些日夏养花网定义在样本空间上的实值函数,称为随机变量。
因为随机变量的值是由试验结果决定的,所以我们可以给随机变量的可能值指定概率。
参考资料来源:百度百科-随机变量
若函数在某点的右极限存在且等于该点的函数值,则函数在该点右连续。
单侧连续的几何意义:
通俗地说,函数在点x0左连续,该点x0对应函数曲线上的点M(x0,f(x0)),同时点M与左边紧邻的函数曲线天衣无缝地连在一起,没有任何间隔。同理,理解右连续。
随机变量的分布函数的定义就是函数小于某个值时的概率大小,所以是要满足左连续!
文章标签:
下一篇:螨虫性皮炎怎么治疗啊???