日夏养花网

您好,欢迎访问日夏养花网,我们的网址是:http://www.rixia.cc

分子生物学的发展趋势是什么

2022-02-18 06:58:41 分类:养花问答 来源: 日夏养花网 作者: 网络整理 阅读:80

分子生物学在什么领域有重大发展

二、现代分子生物学的建立和发展阶段
  这一阶段是从50年代初到70年代初,以1953年Watson和Crick提出的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑开创了分子遗传学基本理论建立和发展的黄金时代。DNA双螺旋发现的最深刻意义在于:确立了核酸作为信息分子的结构基础;提出了碱基配对是核酸复制、遗传信息传递的基本方式;从而最后确定了核酸是遗传的物质基础,为认识核酸与蛋白质的关系及其在生命中的作用打下了最重要的基础。在此期间的主要进展包括:
遗传信息传递中心法则的建立
  在发现DNA双螺旋结构同时,Watson和Crick就提出DNA复制的可能模型。其后在1956年A.Kornbery首先发现DNA聚合酶;1958年Meselson及Stahl用同位素标记和超速离心分离实验为DNA半保留模型提出了证明;1968年Okazaki(冈畸)提出DNA不连续复制模型;1972年证实了DNA复制开始需要RNA作为引物;70年代初获得DNA拓扑异构酶,并对真核DNA聚合酶特性做了分析研究;这些都逐渐完善了对DNA复制机理的认识。
  在研究DNA复制将遗传信息传给子代的同时,提出了RNA在遗传信息传到蛋白质过程中起着中介作用的假说。1958年Weiss及Hurwitz等发现依赖于DNA的RNA聚合酶;1961年Hall和Spiege-lman用RNA-DNA杂交证明mRNA与DNA序列互补;逐步阐明了RNA转录合成的机理。
  在此同时认识到蛋白质是接受RNA的遗传信息而合成的。50年代初Zamecnik等在形态学和分离的亚细胞组分实验中已发现微粒体(microsome)是细胞内蛋白质合成的部位;1957年Hoagland、Zamecnik及Stephenson等分离出tRNA并对它们在合成蛋白质中转运氨基酸的功能提出了假设;1961年Brenner及Gross等观察了在蛋白质合成过程中mRNA与核糖体的结合;1965年Holley首次测出了酵母丙氨酸tRNA的一级结构;特别是在60年代Nirenberg、Ochoa以及Khorana等几组科学家的共同努力破译了RNA上编码合成蛋白质的遗传密码,随后研究表明这套遗传密码在生物界具有通用性,从而认识了蛋白质翻译合成的基本过程。
  上述重要发现共同建立了以中心法则为基础的分子遗传学基本理论体系。1970年Temin和Baltimore又同时从鸡肉瘤病毒颗粒中发现以RNA为模板合成DNA的反转录酶,又进一步补充和完善了遗传信息传递的中心法则。
对蛋白质结构与功能的进一步认识
  1956-58年Anfinsen和White根据对酶蛋白的变性和复性实验,提出蛋白质的三维空间结构是由其氨基酸序列来确定的。1958年Ingram证明正常的血红蛋白与镰刀状细胞溶血症病人的血红蛋白之间,亚基的肽链上仅有一个氨基酸残基的差别,使人们对蛋白质一级结构影响功能有了深刻的印象。与此同时,对蛋白质研究的手段也有改进,1969年Weber开始应用SDS-聚丙烯酰胺凝胶电泳测定蛋白质分子量;60年代先后分析得血红蛋白、核糖核酸酶A等一批蛋白质的一级结构;1973年氨基酸序列自动测定仪问世。中国科学家在1965年人工合成了牛胰岛素;在1973年用1.8AX-线衍射分析法测定了牛胰岛素的空间结构,为认识蛋白质的结构做出了重要贡献。
三、初步认识生命本质并开始改造生命的深入发展阶段
  70年代后,以基因工程技术的出现作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。其间的重大成就包括:
1.重组DNA技术的建立和发展
  分子生物学理论和技术发展的积累使得基因工程技术的出现成为必然。1967-1970年R.Yuan和H.O.Smith等发现的限制性核酸内切酶为基因工程提供了有力的工具; 1972年Berg等将SV-40病毒DNA与噬菌体P22DNA在体外重组成功,转化大肠杆菌,使本来在真核细胞中合成的蛋白质能在细菌中合成,打破了种属界限;1977年Boyer等首先将人工合成的生长激素释放抑制因子14肽的基因重组入质粒,成功地在大肠杆菌中合成得到这14肽;1978年Itakura(板仓)等使人生长激素191肽在大肠杆菌中表达成功;1979年美国基因技术公司用人工合成的人胰岛素基因重组转入大肠杆菌中合成人胰岛素。至今我国已有人干扰素、人白介素2、人集落刺激因子、重组人乙型肝炎疫苗、基因工程幼畜腹泻疫苗等多种基因工程药物和疫苗进入生产或临床试用,世界上还有几百种基因工程药物及其它基因工程产品在研制中,成为当今农业和医药业发展的重要方向,将对医学和工农业发展作出新贡献。
  转基因动植物和基因剔除动植物的成功是基因工程技术发展的结果。1982年Palmiter等将克隆的生长激素基因导入小鼠受精卵细胞核内,培育得到比原小鼠个体大几倍的“巨鼠”,激起了人们创造优良品系家畜的热情。我国水生生物研究所将生长激素基因转入鱼受精卵,得到的转基因鱼的生长显著加快、个体增大;转基因猪也正在研制中。用转基因动物还能获取治疗人类疾病的重要蛋白质,导入了凝血因子Ⅸ基因的转基因绵羊分泌的乳汁中含有丰富的凝血因子Ⅸ,能有效地用于血友病的治疗。在转基因植物方面,1994年能比普通西红柿保鲜时间更长的转基因西红柿投放市场,1996年转基因玉米、转基因大豆相继投入商品生产,美国最早研制得到抗虫棉花,我国科学家将自己发现的蛋白酶抑制剂基因转入棉花获得抗棉铃虫的棉花株。到1996年全世界已有250万公顷土地种植转基因植物。
  基因诊断与基因治疗是基因工程在医学领域发展的一个重要方面。1991年美国向一患先天性免疫缺陷病(遗传性腺苷脱氨酶ADA基因缺陷)的女孩体内导入重组的ADA基因,获得成功。我国也在1994年用导入人凝血因子Ⅸ基因的方法成功治疗了乙型血友病的患者。在我国用作基因诊断的试剂盒已有近百种之多。基因诊断和基因治疗正在发展之中。
  这时期基因工程的迅速进步得益于许多分日夏养花网子生物学新技术的不断涌现。

简述细胞生物学今后的主要发展趋势

简述细胞生物学今后的主要发展趋势
随着分子生物学的兴起和向各方面的渗透,生物科学的各分支学科也经历着兴衰更替的变化。从目前的发展状况来看,分子生物学仍将保持带头分支学科的地位,重点研究的领域是:生物大分子的结构和功能的研究;真核生物基因及基因表达调控的研究;分子神经生物学的研究;医学分子生物学的研究;植物分子生物学的研究;分子进化的研究,等等。由此可见,分子生物学带动了整个生物科学的全面发展,这是当代生物科学的一个显著特点和发展趋势。

现代生物科学的发展,是生物科学与数学、物理学、化学等科学之间相互交叉、渗透和相互促进的结果。其他相关科学推动了生物科学对生命现象和本质的研究不断深入和扩大,生物科学的发展也为其他相关科学提出了许多新的研究课题,开辟了许多新的研究领域。可见,生物科学与有关科学的高度的双向渗透和综合,也已经成为当代生物科学的一个显著特点和发展趋势。

现代生物科学的新进展,许多是在采用先进的技术和手段的条件下取得的,这些新技术有:DNA重组技术,DNA合成技术,快速DNA序列测定技术,蛋白质人工合成技术,蛋白质序列测定技术,核酸分子杂交技术,限制性内切酶片段长度多样性技术,反义RNA技术,聚合酶链反应扩增技术,单克隆抗体技术,脉冲电泳技术,磁力共振技术,扫描隧道和原子力显微技术,同步辐射技术,电子计算机技术,等等。可见,研究技术和手段的革新是当代生物科学的另一个显著特点和发展趋势。

近些年来,生态学的研究特别引起人们的关注。由于人类在全球的生存条件日趋恶化,生态学正与数学、地球科学等学科联合起来,研究地球各个圈层的相互作用及其引起的全球变化。随着分子生物学的发展,生物学家也开始在分子水平上研究生物与环境的关系。这种宏观与微观两方面的发展和结合是当代生态学发展的一个重要特征。生态学正在成为指导未来全球经济持续发展的准则和科学依据。可见,对生态学研究的高度重视,也是当代生物科学的一个显著特点和发展趋势。

未来生物学研究的热点领域从现在到21世纪初,分子生物学的研究将带动生物科学全面迅速地发展,生物科学的众多分支学科,将在更高层次上实现理论的大综合。促使生物科学向高层突破的热点研究领域有:生物大分子的结构和功能,基因和细胞,遗传、发育和进化的统一,脑科学,行为科学,生态学等。

试论述21世纪分子生物学研究方向及发展趋势.

21世纪分子生物学研究方向及发展趋势

原定2005年完成人类基因组DNA测序的计划,已提前5年完成。当前,人类基因组研究的重点正在由“结构”向功能转移,一个以基因组功能研究为主要研究内容的“后基因组”(post-genomics)
时代已经到来。它的主要任务是研究细胞全部基因的表达图式和全部蛋白图式,或者说“从基
因组到蛋白质组”。于是,分子生物学研究的重点似乎又将回到蛋白质上来,生物信息学也应运而生。随着新世纪的到来,生命科学又将进入这样一个新时代。
一、功能基因组学

遗传学最近的定义是,对生物遗传的研究和对基因的研究。功能基因组学(funwww.rixia.ccctionalgenomics)
是依附于对DNA序列的了解,应用基因组学的知识和工具去了解影响发育和整个生物体的特定序列表达谱。以酿酒酵母(S. cervisiae)为例,它的16条染色体的全部序列已于
1996年完成,基因组全长12086 kb,含有5885个可能编码蛋白质的基因,140个编码rRNA
基因,40个编码snRNA基因和275个tRNA基因,共计6340个基因。功能基因组学是进一步研究这6000多个基因,在一定条件下,譬如酵母孢子形成期,同时有多少基因协同表达才能完成这一发育过程,这就需要适应这一时期的全套基因表达谱(gene expression pattern)。要解决如此复杂的问题就必须在方法学上有重大的突破,创造出高效快速地同时测定基因组成千上万个基因活动的方法。目前用于检测分化细胞基因表达谱的方法,有基因表达连续分析法(serial analysis Of
gene expression,SAGE)、微阵列法(microarray)、有序差异显示(ordered differential display
,ODD)和DNA芯片(DNA chips)技术等。今后,随着功能基因组学的深入发展,将会有更新更
好的方法和技术出现。功能基因组亦包括了在测序后对基因功能的研究。酵母有许多功能重复的基因,常分布在染色体的两端,当酵母处于丰富培养基条件时,这些
基因似乎是多余的,但环境改变时就显示出其功能。基因丰余现象实际上是对环境的适应,丰余基因的存在为进化适应提供了可选择的余地。基因
组全序列还保留了基因组进化的遗迹,提示基因重复常发生在近中心粒区和染色体臂中段。
当前,研究者已把酵母基因组作为研究真核生物基因组功能的模式,计划建立酵母基因组6000多个基因的单突变体文库(single mutant library),并可用于其它高等真核生物基因组之“基因功能作图”。
总之,功能基因组学的任务,是对成千上万的基因表达进行分析和比较,从基因组整体水平上阐述基因活动的规律。核心问题是基因组的多样
性和进化规律,基因组的表达及其调控,模式生物体基因组研究等。这门新学科的形成,是在后基因组时代生物学家的研究重点从揭示生命的所有
遗传信息转移到在整体水平上对生物功能研究的重要标志。
二、蛋白质组学
蛋白质组(proteome)对不少人来说,目前还是一个比较陌生的术语;它是在1994年由澳大利亚Macguarie大学的Wilkins等首先提出的,随后,得到国际生物学界的广泛承认。他们对蛋白质组的定义为:“蛋白质组指的是一个基因组所表达的全部蛋白质”(proteome indicates the proteins expressed bhttp://www.rixia.ccy a genome);“proteome”是由蛋白质一词的前几个字母"prote”和基因组一词的后几个字母"ome”拼接而成。
蛋白质组学是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。蛋白质组与基因组不同,基因组基本上是固定不变的,即同一生物不同细胞中基日夏养花网因组基本上是一样的,人类的基因总数约是32 000个。单从DNA序列尚不能回答某基因的表达时间、表达量、蛋白质翻
译后加工和修饰的情况,以及它们的亚细胞分布等。这些问题可望在蛋白质组研究中找到答案,因为蛋白质组是动态的,有它的时空性、可调节性,进而能够在细胞和生命有机体的整体水平上阐明生命现象的本质和活动规律。蛋白质组研究的数据与基因组数据的整合,亦会对功能基因组的研究发挥重要的作用。

蛋白质组由原定义一个基因组所表达的蛋白质,改为细胞内的全部蛋白质,比较更为全面而准确。但是,要获得如此完整的蛋白质组,在实践
中是难以办到的。因为蛋白质的种类和形态总是处在一个新陈代谢的动态过程中,随时发生着变化,难以测准。所以,1997年,Cordwell和Humphery-Smith提出了功能蛋白质组(functionalproteome)的概念,它指的是在特定时间、特定环境和实验条件下基因组活跃表达蛋白质。与此同时,中国生物科学家提出了功能蛋白质组学(functional protemics)新概念,把研究定位在细胞内与某种功能有关或在某种条件下的一群蛋白质。功能蛋白质组只是总蛋白质组的一部分,通过对功能蛋白质组的研究,既能阐明某一群体蛋白质的功能,亦能丰富总蛋白质数据库,是从生物大分子(蛋白质、基因)水平到细胞水平研究的重要桥梁环节。

无论是蛋白质组学还是功能蛋白质组学,首先都要求分离亚细胞结构、细胞或组织等不同生命结构层次的蛋白质,获得蛋白质谱。为了尽可能分辨细胞或组织内所有蛋白质,目前一般采用高分辨率的双向凝胶电泳。一种正常细胞的双向电泳图谱通过扫描仪扫描并数字化,运用二维分析软
件可对数字化的图谱进行各种图像分析,包括分离蛋白在图谱上的定位,分离蛋白的计数、图谱间蛋白质差异表达的检测等。一种细胞或组织的蛋白质组双向电泳图,可得到几千甚至上万种蛋白质,为了适应这种大规模的蛋白质分析,质谱已成为蛋白质鉴定的核心技术。从质谱技术测得完整蛋白质的相对分子质量、肽质谱(或称肽质量指纹,pepetide massfingerprint)以及部分肽序列等数据,通过相应数据库的搜寻来鉴定蛋白质。此外,尚需对蛋白质翻译后修饰的类型和程度进行分析。在蛋白质组定性和定量分析的基础上建立蛋白质组数据库。
从提出蛋白质组的概念到现在短短几年中,已于1997年构建成第一个完整的蛋白质组数据库-酵母蛋白质数据库(yeast protein database,YPD),进展速度极快,新的思路和技术不断涌现,蛋白质组学这门新兴学科,在今后的实践中将会不断完善,充实壮大,发展成为后基因组时代的带头学科。

三、生物信息学

HGP
大量序列信息的积累,导致了生物信息学(Bioinformatics)这门全新的学科的产生,对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和转输。它常由数据库、计算机网络和应用软件三大部分组成。国际上现有4个大的生物信息中心,即美国生物工程信息中心(GenBank)和基因组序列数据库(GSDB),欧洲分子生物学研究所(EMBL)和日本DNA数据库(DDBJ)。这些中心和全球的基因组研究实验室通过网站、电子邮件或者直接与服务器和数据库联系而获得的搜寻系统,使得研究者可以在多种不同的分析系统中对序列数据进行查询,利用和共享巨大的生物信息资源。

随着DNA大规模自动测序的迅猛发展,序列数据爆炸性地积累,HGP正式启动之时,就与信息科学和数据库技术同步发展,收集、存储、处理了庞大的数据,生物信息学逐步走向成熟,在基因组计划中发挥了不可取代的作用。建立的核苷酸数据库,已存有数百种生物的cDNA和基因组DNA序列的信息。在已应用的软件中,有DNA分析、基因图谱构建、RNA分析、www.rixia.cc多序列比较、同源序列检索、三维结构观察与演示、进化树生成与分析等。在蛋白质组计划中,由于蛋白质组随发育阶段和所处环境而变化,mRNA丰度与蛋白质的丰度不是显著相关,以及需要经受翻译后的修饰,因而对蛋白质的生物信息学研究,在内容上有许多特殊之处。现在建立的数据库,有蛋白质序列、蛋白质域、二维电泳、三维结构、翻译后修饰、代谢及相互作用等。而通用的软件,主要包括蛋白质质量+蛋白质序列标记、模拟酶解、翻译后修饰等。

当今的潮流是利用生物信息学研究基因产物——蛋白质的性质并估计基因的功能。
传统的基因组分析是利用一系列方法来得到连续的DNA
序列的信息,而蛋白质组连续系(proteomic cortigs)则源于多重相对分子质量和等电范围,由此来构建活细胞内全部蛋白质表达的图像。氨基酸序列与其基因的DNA
序列将被联系在一起,最终与蛋白质组联系在一起,从而允许人们研究不同条件下的细胞和组织。
http://wenku.baidu.com/view/8a22e94669eae009581bec35.html
看我整理了这么长时间,你就采纳了吧,亲。

21世纪分子生物学发展的趋势

基因组学(主要是功能基因组学).蛋白质组学.
功能基因组学,蛋白质组学,生物信息学

分子生物学发展方向

以及再这一方面获得诺贝尔奖的人及其研究成果 。rn谢谢
细胞分子生物学及分子细胞生物学
关于这一方面获奖的人就太多啦,
只告诉你今年的吧
2006年度诺贝尔生理学或医学奖授予两名美国科学家安德鲁-费里和克拉格-米洛,以表彰他们发现了RNA干扰现象。费里和米洛将分享奖金。
更多的可查看:
http://news.sina.com.cn/z/nobel2006/
生化危机!
克隆人!

太笼统了

文章标签: 生石花

本文标题: 分子生物学的发展趋势是什么
本文地址: http://www.rixia.cc/wenda/213127.html

上一篇:金钻换盆后叶子变软

下一篇:关于黄山的资料?描写景色,或者其他什么都可以。

相关推荐

推荐阅读

猜你喜欢

返回顶部