日夏养花网

您好,欢迎访问日夏养花网,我们的网址是:http://www.rixia.cc

植物固氮有什么秘密?

2022-01-14 06:59:51 分类:养花问答 来源: 日夏养花网 作者: 网络整理 阅读:82

什么是破解植物固氮的谜团?

谁都知道,要想使庄稼获得丰产,重要的条件就是要有足够的肥料。说起肥料,自然离不开各种各样的化肥,例如常见的硫酸铵、尿素、碳酸氢铵,还有人畜粪尿和绿肥。

令人感到奇怪的是,在贫瘠的土地上,普通的庄稼长不好,可是豆科植物却能在不施肥料的情况下长势良好,这是为什么呢?秘密就在豆科植物的根部。

如果你仔细观察豆科植物的根部,就会发现那儿有许多圆鼓鼓的小疙瘩,它们好像一个个小瘤子,因此被科学家称为“根瘤”。根瘤看上去很普通,把它挤破后,里面会流出一些带腥臭味的“红水”。但是,这种“红水”并不寻常,把它放到显微镜下观察,在红红的汁液中可以看见许多微小的生命在活动,有的像小木棍,有的像小圆球,这些小家伙们就是大名鼎鼎的根瘤菌。

我们知道,在空气中含有大量的氮,它是植物生长中不可缺少的重要营养元素。但是,空气中的氮都处于游离状态,无法被植物直接吸收,只有把空气中游离的分子氮变为氮的化合物,才能被植物吸收利用。要做到这一切,就需要固氮微生物帮忙了,而豆科植物的根瘤菌正是其中的重要成员。

很多年来,科学家们一直在探索豆科植物固氮的奥秘,竭尽全力试图解开根瘤菌的固氮之谜,因为这项研究太重要了,如果成功,它将意味着每年能省去数百亿甚至数千亿美元的人造氮肥费用。美国的著名共生学专家威廉特拉格,经过认真计算后得出惊人的数据:全世界豆科植物每年在土壤中固氮的数量达9000万吨。

对豆科植物固氮本领的研究,可追溯到1838年,法国农业化学家波辛格鲁特首次发现,豆科植物能固定大气中分子状态的氮。1866年,俄国学者沃罗宁又发现豆科植物的根瘤菌中含有微生物,并指出根瘤的形成是微生物侵入植物根部的结果。到了1888年,荷兰科学家别依林克应用分离方法,第一次获得了根瘤菌的纯菌种,此后,人们渐渐揭开了植物固氮之谜的最外面几层帷幕。

科学家们发现,根瘤菌在土壤中单独生存时并不具有固氮作用,只有把豆科植物的种子播到土壤中,待幼根形成后,根系的分泌物吸引根瘤菌,让根瘤菌通过根毛侵入根的内部组织,在那儿进行大量繁殖,使根部膨大形成根瘤,这时,根瘤中的根瘤菌与豆科植物结成了一种特殊的共生关系,根瘤菌才开始发挥固氮作用,供给植物氮素养料。

科学家们还发现,根瘤菌的种类有很多,每种根瘤菌只能在一种或几种植物根部形成根瘤。例如,豌豆根瘤菌只能在豌豆、蚕豆的根部形成根瘤;苜蓿根瘤菌只能在紫花苜蓿、金花菜的根部形成根瘤;豇豆根瘤菌只能在豇豆、绿豆、花生的根部形成根瘤;而紫云英根瘤菌只能在紫云英的根部形成根瘤。

经过许多年的研究探索,科学家们对根瘤菌固氮机制的认识越来越多,但遇到的问题和迷惑之处也同样越来越多。当人们清楚地了解到微生物进入植物根组织,会改变模样成为变形菌之后,摆在科学家面前的主要问题是:变形菌能繁殖吗?它们是如何传宗接代的?它们能接连不断地使根瘤菌完成生命循环吗?

对于这些令人烦恼的问题,科学家们众说纷纭。许多学者认为,在变形菌生存的最后阶段,它们的植物主人便违反共生原则,把它们的共生者消化掉。植物的下一代若要感染上根瘤菌,还得通过土壤里新的细菌繁殖。但也有的学者认为,并非所有的细菌都会变成变形菌,也许有少数不能被消化掉。后来,前苏联科学院院士米舒斯金与他的合作者在研究中发现,变形菌内部会形成小圆细胞——似亲孢子,于是他提出推测:根瘤菌为了使自己免遭绝种,在它的独立生活期内,就是以似亲孢子的形式留在土壤里。

老的争论还在继续不断,新的问题又接踵而来。在研究植物固氮的过程中,一个使科学家们极为关注日夏养花网的问题是,当根瘤菌离开了植物体之后,是否也同样能进行固氮作用。这是一个打破传统观念的想法,因为根据以往的概念,根瘤菌只有与豆科植物结合在一起,才能吸收空气中的氮从事固氮工作。也就是说,根瘤菌虽然一生的大部分时间是在土壤里过着独立生活,如同土壤中的其他微生物一样,也是依靠吸取周围现成的有机物来生存的,但并不能固定空气中的氮。根瘤菌可以这样世世代代生活几十年之久,等待着与合适的植物相遇。一旦遇到了好机会,根瘤菌便欣然告别土壤这一生活环境,进入到植物的根里面,使根部组织增生,变成瘤状。这时候,根瘤菌便获得了新的奇妙特征——固氮本领。

科学家们已经知道,是植物根部根瘤菌中的固氮酶促使根瘤菌产生固氮能力的,但问题是,固氮酶非得要在植物和根瘤菌两者共同的合作下才能产生吗?

植物固氮需要什么条件?通常在什么环境下发生?

生物固氮作用
生物固氮作用(biological nitrogen fixatio):大气中的氮被原还为氨的过程。生物固氮只发生在少数的细菌和藻类中。

估计全球每年生物固氮作用所固定的氮(N2)约达17500万吨,其中耕地土壤约有4400万吨,超过了每年施入土壤4000万吨肥料氮素(工业固氮)的量(Burris,1977)。因此,生物固氮作用有很大潜力。

固氮微生物种类:到1982年固氮微生物达70多个属,大多数是原核微生物(细、放、蓝细菌),也有真菌。根据固氮微生物与高等植物以及其他生物关系,分为二个类型。

1.自生固氮微生物——在土壤中或培养基中,独自生活时能固定了氨态氮。在进行固氮作用时对植物或其它生物没有明显的依存关系。

有好气性、厌气性、兼厌气性有化能自养异养,光能自养、异养型生固氮微生物。

2.共生固氮微生物――二种微生物紧密地生长在一起时,由固氮的共生菌进行分子态氮的还原作用。

自生固氮微生物生物固氮作用的条件:

1、防氧保护系统(好气性固定微生物需具备之);

2、能量和电子供体,以及传递电子的电子载体系统;

3、固氮酶催化系统;

4、氨、氨基酸同化成蛋白质系统;

共生固氮微生物生物固氮作用的条件则更复杂。

---------------------------------

生物固氮系统

具有生物固氮能力的仅限于原核生物,即细菌和蓝绿藻。有些固氮微生物,如蓝绿藻自生于陆地或水域生态系统中,其他则群生于寄生植物的根际,其中对高等植物最为重要的有与豆科植物或结瘤的非豆科植物共生的固氮微生物。在陆地生态系统中主要有三种固氮体系,即共生固氮、联合固氮和自生固氮体系。三种固氮体系中,能源和固氮能力都存在明显差异。共生体系由于固氮微生物直接从寄主植物获得碳水化合物作为固氮能源,其固氮能力最强。豆科(Leguminosae)植物近2000个种中约有15%具有共生固氮系统,其中近300种豆科植物中有90%与根瘤菌共生形成根瘤。如大豆、蚕豆、三叶草、苜蓿与根瘤菌的共生,是农业中最重要的共生体系。在森林和林地中有8个科23个属的植物与固氮微生物形成共生体系。如赤杨属(Alnus)和蓟木属(Ceanothus)与放线菌之间形成结瘤共生体系。这些非豆科植物是缺氮土壤的先锋植物。

豆科植物根上的根瘤是由于根瘤菌侵入根部后形成的,根瘤是固氮的场所。根瘤菌侵入寄主的过程很复杂。在根瘤菌入侵寄主根毛或表皮细胞之前,土壤中的根瘤菌是一种不能运动的小球菌(图5-19)。由于植物根分泌物(氨基酸、维生素)的影响,这些小球菌产生鞭毛,具有移动侵入寄主的能力。根瘤菌在根表面分泌某种未知物质(分子)使根毛弯曲。这种物http://www.rixia.cc质的分泌受到根释放成分(如类黄酮)的促进。此后,根瘤菌分泌酶溶解根毛细胞壁,根瘤菌随即由此处侵入根毛,根毛形成侵染丝(infectionthread)。根瘤菌在侵染丝中大量繁殖随侵染丝进入皮层。根瘤菌被释放到皮层细胞质中,刺激细胞的分裂和生长形成根瘤(root nodule)(图5-19)。根瘤中大部分为含有根瘤菌的四倍体细胞,只有少部分为未被侵染的二倍体细胞。成熟根瘤中的根瘤菌失去鞭毛而成为不能移动的类菌体(bacteriod),一个典型的根瘤细胞中通常含有数千个类菌体,这些类菌体在细胞内聚成一个个小群体,每个小群体有数个类菌体组成(大豆根瘤中为4~6个)。每群体外面有一层膜包着,此膜称为类菌体外周膜(peribacteroid membrane),在此膜与类菌体之间的空间称为类菌体外周空间(peribacteriodspace)。在类菌体外周膜以外的细胞质中存在着豆血红蛋白(leghemoglobin)。此蛋白含有红色的血红素基团(hemegroup)。据认为豆血红蛋白的作用是为类菌体在严格控制的条件下供应氧。因为类菌体的呼吸作用需要氧,但过多的氧则会抑制催化氮素固定的固氮酶的活性。

根瘤中的固氮作用只在类菌体内进行。寄主植物向类菌体供给碳水化合物,主要形式是蔗糖。类菌体利用这些糖进行呼吸作用,产生电子和ATP,将N2还原成NH4+。

2.固氮的生物化学与生理学

生物固氮的总反应式如下:

N2+8e+16MgATP+16H2O→2NH3+H2+16MgADP+16Pi+8H+

催化此反应的酶是固氮酶。固氮酶是多功能的氧化还原酶,除了还原N2以外,还能还原多种类型的底物,如乙炔、氰化物、氧化亚氮、联氨、叠氮化物和H+等。用气相色谱仪能很容易测定乙炔还原成乙烯的产生量,这为研究固氮酶活性提供了极为简单的方法。该法对生物固氮研究取得重大进展发挥了作用。

固氮酶由铁钼蛋白(Fe-Moprotein)和铁蛋白(Fe-protein)组成。这两个蛋白单独存在时都不呈现固氮酶活性,只有两者聚合构成复合体时才有催化氮还原的功能。铁钼蛋白由分子量分别为51kD和60kD的2个亚基和2个亚基组成的四聚体(22),分子量约为220~245kD。每分子铁钼蛋白含有两个钼原子,28个铁原子。铁蛋白的分子量在59~73kD之间,由两个分子量同为30kD的亚基组成(2)。铁蛋白含有4个铁原子。在氮还原为NH4+的过程中,固氮日夏养花网酶中的Fe和Mo都发生氧化还原反应,如图5-20所示。类菌体利用碳水化合物进行呼吸作用产生NADH或NADPH和ATP。已经查明,固氮的天然电子传递体(供体)有铁氧还蛋白、黄素氧还蛋白等。固氮生物体内存在着ATP和二价的金属离子(如Mg2+)是固氮不可缺少的条件。只有在Mg2+的作用下,ATP才可以与Fe蛋白结合,而且必需有Fe-Mo蛋白的参与才发生ATP水解反应。Fe蛋白将电子传递给Fe-Mo蛋白的同时伴随着ATP水解产生ADP。Fe-Mo蛋白最后将电子传递给N2和质子,产生2分子NH3和1分子H2。

固氮酶对氧敏感,其催化反应需在厌氧下进行。除了专性厌氧的生物外,氧对其他固氮生物的固氮酶有损伤作用,但这些生物通过呼吸作用产生固氮必需的ATP又需要氧,所以高效率的固氮作用一般是在微氧下进行的。不同固氮生物避免氧对固氮酶伤害的机制各异。如具有异形胞的蓝藻的固氮功能主要在异形胞中进行,这种细胞外有一层防氧进入的糖脂组成的外膜,缺少水光解放氧的PSⅡ,其中戊糖磷酸途径的两种酶活性较低,而超氧物歧化酶和脱氢酶活性都比较强,使异形胞保持了一个微氧环境。豆科植物的根瘤中类菌体有一层类菌体周膜,瘤内皮层内侧细胞排列紧密并形成间隙,两者对于保持类菌体的低氧环境十分重要。此外,根瘤细胞内的豆血红蛋白也部分地控制着类菌体氧气的需求。在非豆科植物共生固氮体系中,在与放线菌共生的瘤中有囊泡存在,这种囊泡可能与蓝藻的异形胞一样具有防氧功能。很明显,共生体系中的根瘤本身就是一个良好的氧保护系统。

在类菌体内合成的NH3(很可能是NH4+)要从类菌体内运出来,才能参与寄主植物中的代谢。在含类菌体细胞的细胞质中,NH4+转化成谷酰胺、谷氨酸、天冬酰胺和酰脲。这些物质由转移细胞分泌到木质部,运输到植物的其他部分。

由于生物固氮的重日夏养花网要性,有关控制生物固氮的环境与遗传因素的研究受到重视。研究表明,凡是能增加植物光合作用能力的因素,如合适的水分、温度、强光照和高CO2水平等都可以促进固氮作用。豆科植物与固氮生物的遗传因素也影响固氮作用的速率和产量。例如其中一个遗传因素是豆科植物的结瘤能力,它依赖于根瘤菌与寄主植物之间的由遗传控制的识别过程。为提高结瘤能力,科学工作者正在进行改造根瘤菌基因以及选择合适的寄主品种的研究工作。另外一个遗传因素是固氮酶在还原N2的同时还原H+。由总反应式可见,固氮酶催化的反应中有1/4的电子用于还原H+产生H2。而H2被还原后逸出进入大气,这个过程使能量白白浪费。不过,大多数根瘤菌和自生固氮细菌均含有氢化酶,该酶将H2氧化成H2O,这一过程推动由ADP和Pi合成ATP的反应。有研究表明,与具有较高氢化酶活性的根瘤菌共生的豆科植物(如大豆)的产量比与无氢化酶活性的根瘤共生的稍高。可能是前者减少了能量的浪费。基于这种认识,通过基因工程技术可能会获得具有更高活性的氢化酶的根瘤菌并增加豆类产量。此外,用基因工程技术将固氮基因导入非豆科植物根,促使这些植物固氮的工作也获得了一定的进展。

植物的不同生长阶段会影响生物固氮作用。如大豆、花生、木豆,通过生物固氮固定的氮素中90%在生殖阶段中进行,而10%在营养生长过程中进行。奇怪的是,几种豆类的生物固氮提供的氮素仅为其一生所需总氮量的1/4至1/2,其余主要在营养www.rixia.cc生长阶段从土壤中吸收NO3-或NH4+。不过,多施氮肥并不能增产。原因是植物对氮肥吸收增加反而使生物固氮能力下降。硝酸盐肥料的影响有几个方面:抑制根瘤菌与根毛的接触,中止侵染丝的形成;根瘤生长缓慢,抑制已成熟根瘤的固氮作用;当增施NO3-和NH4+时,加速根瘤的衰老。
需要固氮微生物,一种是自生固氮微生物,另一种是和植物共同固氮的微生物比如大豆。第一种可以自己单独固氮,第二种要和豆科植物一起种,因为它要靠植物给他养料:有机物。

生物固氮是什么?

氮是农作物生长所必需的三大肥料之一。自然界中,豆科植物的根瘤中有许多与之共生的根瘤菌,根瘤菌内的固氮酶,能将空气中的氮转变为氨,供给自己吸收利用。据计算,每亩地的根瘤菌一年约能制造氮肥25千克。而小麦、水稻、棉花等非豆科植物就没有这种可以自产“氮肥”的固氮能力。如果能将固氮基因移植入非豆科的农作物体内,使它们都变成能使自身固氮,不仅可以提高产量,而且可以减少能耗,肥沃土壤,净化环境,还可以节省为生产氮肥而耗费的大量资金。目前,人们正在研究能否用基因移植的方法,把固氮基因转移到麦、稻、棉等非豆科植物中去,使非豆科植物也能固氮。现在已有人把一种固氮菌移植到了胡萝卜细胞,还有人已把豌豆根瘤菌引入小麦和油菜的细胞。但实现这一目标还有许多技术难题有待解决。

文章标签:

本文标题: 植物固氮有什么秘密?
本文地址: http://www.rixia.cc/wenda/202270.html

上一篇:女人吃什么可以不显老

下一篇:什么花代表单纯,什么花代表爱情?啊……

相关推荐

推荐阅读

猜你喜欢

返回顶部