植物抗病基因从结构和功能上可分为哪几类,各具有什么特点及功能
植物抗病基因从结构和功能上可分为几类,有什么特点及功能
①富含亮氨酸重复序列蛋白类(1euchttp://www.rixia.ccine-rich repeat, LRR)如番茄Cf2等;
②核苷酸结合位点及富含亮氨酸重复序列蛋白类(nucleotide binding site,NBS-LRR); 如Pib
③毒素还原酶类, 如玉米HM1基因。
④富含亮氨酸重复序列蛋白激酶类(LRR-kinase), 如水稻Xa21等。
⑤Ser/Thr 蛋白激酶类(STK), 如番茄Pro等。
各种细胞连接在结构和功能上各有什么主要特点?
在脊椎动物中,细胞连接可分为:
粘着连接和桥粒(属于锚定连接)
间隙连接,(属于通讯连接)通讯连接还包括神经细胞突触连接和植物细胞的胞间连丝
紧密连接(封闭连接的主要形式)
在无脊椎动物中,有多种细胞连接方式,如:间壁连接(属于封闭连接)
粘着连接和桥粒(属于锚定连接)
通过细胞的骨架系统将细胞或细胞与基质相连成一个坚挺、有序的细胞群体,使细胞间、细胞与基质间具有抵抗机械张力的牢固粘合。锚定连接在组织内分布很广泛,在上皮组织,心肌和子宫颈等组织中含量尤为丰富。 特点:通过肌动蛋白丝或中等纤维相连。
一锚定连接的构成
1、参与锚定连接的骨架系统可分两种不同形式:
⑴与中间纤维相连的锚定连接主要包括桥粒和半桥粒;
⑵与肌动蛋白纤维相连的锚定连接主要包括粘合带与粘合斑。
2、构成锚定连接的蛋白可分成两类:
⑴细胞内附着蛋白,将特定的细胞骨架成分(中间纤维或微丝)同连接复合体结合在一起。
⑵跨膜连接的糖蛋白,其细胞内的部分与附着蛋白相连,细胞外的部分与相邻细胞的跨膜连接糖蛋白相互作用或与胞外基质相互作用。
二锚定连接的类型、结构与功能
1、中间纤维相连的锚定连接
⑴桥粒:又称点状桥粒,位于粘合带下方。是细胞间形成的钮扣式的连接结构,跨膜蛋白(钙粘素)通过附着蛋白(致密斑)与中间纤维相联系,提供细胞内中间纤维的锚定位点。中间纤维横贯细胞,形成网状结构,同时还通过桥粒与相邻细胞连成一体,形成整体网络,起支持和抵抗外界压力与张力的作用。桥粒(desmosome)存在于承受强拉力的组织中,如皮肤、口腔、食管等处的复层鳞状上皮细胞之间和心肌中。相邻细胞间形成纽扣状结构,细胞膜之间的间隙约30nm,质膜下方有细胞质附着蛋白质,如片珠蛋白(plakoglobin)、桥粒斑蛋白(desmoplakin)等,形成一厚约15~20nm的致密斑。斑上有中间纤维相连,中间纤维的性质因细胞类型而异,如:在上皮细胞中为角蛋白丝(keratin filament日夏养花网s),在心肌细胞中则为结蛋白丝(desmin filaments)。kiLkFQhw桥粒中间为钙粘素(desmoglein及desmocollin)。因此相邻细胞中的中间纤维通过细胞质斑和钙粘素构成了穿胞细胞骨架网络。
主要构成单位是跨膜蛋白、附着蛋白、中间纤维。胰蛋白酶、胶原酶及透明质酸酶皆可破坏跨膜蛋白的胞外结构,使桥粒分离;Ca2+是必需的,故螯合剂也可使之分离。
⑵半桥粒:半桥粒相当于半个桥粒,但其功能和化学组成与桥粒不同。它通过细胞质膜上的膜蛋白整合素将上皮细胞锚定在基底膜上, 在半桥粒中,中间纤维不是穿过而是终止于半桥粒的致密斑内。存在于上皮组织基底层细胞靠近基底膜处,防止机械力造成细胞与基膜脱离。半桥粒(hemidesmosome)在结构上类似桥粒,位于上皮细胞基面与基膜之间,它桥粒的不同之处在于:
①只在质膜内侧形成桥粒斑结构,其另一侧为基膜;
②穿膜连接蛋白为整合素(integrin)而不是钙粘素,整合素是细胞外基质的受体蛋白;
③细胞内的附着蛋白为角蛋白(keratin)。
2、与肌动蛋白纤维相连的锚定连接
粘合带(adhesion belt)呈带状环绕细胞,一般位于上皮细胞顶侧面的紧密连接下方。在粘合带处相邻细胞的间隙约15~20nm。
间隙中的粘合分子为E-钙粘素。在质膜的内侧有几种附着蛋白与钙粘素结合在一起,这些附着蛋白包括:-,-,-连锁蛋白(catenin)、粘着斑蛋白(vinculin)、-辅肌动蛋白(-actinin)和片珠蛋白(plakoslobin)。
粘合带处的质膜下方有与质膜平行排列的肌动蛋白束,钙粘蛋白通过附着蛋白与肌动蛋白束相结合。于是,相邻细胞中的肌动蛋白丝束通过钙粘蛋白和附着蛋白编织成了一个广泛的网络,把相邻细胞联合在一起。
粘合斑(adhesion plaque)位于细胞与细胞外基质间,通过整合素(integrin)把细胞中的肌动蛋白束和基质连接起来。连接处的质膜呈盘状,称为粘合斑。
⑴粘合带:又称带状桥粒,位于紧密连接下方,相邻细胞间形成一个连续的带状连接结构,跨膜蛋白通过微丝束间接将组织连接在一起,提高组织的机械张力。
E钙粘素(依赖于Ca2+的粘附分子)为跨膜蛋白的主要成分。存在于上皮细胞近顶部、紧密连接的下端,呈一环形的带状。相邻细胞的间隙约15~20nm。
⑵粘合斑:细胞通过肌动蛋白纤维和整联蛋白与细胞外基质之间的连接方式,微丝束通过附着蛋白锚定在连接部位的跨膜蛋白上。存在于某些细胞的基底,呈局限性斑状。其形成对细胞迁移是不可缺少的。体外培养的细胞常通过粘着斑粘附于培养皿上。
间隙连接(属于通讯连接)
是动物细胞间最普遍的细胞连接,是在相互接触的细胞之间建立的有孔道的、由连接蛋白形成的亲水性跨膜通道,允许无机离子、第二信使及水溶性小分子量的代谢物质从中通过,从而沟通细胞达到代谢与功能的统一。在细胞生长、细胞增殖与分化、组织稳态、肿瘤发生、伤口愈合等生理和病理生理过程中具有重要作用。越来越多的研究表明,构成间隙连接的连接蛋白基因的突变与人类的遗传性疾病相关,如外周神经病、耳聋、皮肤病、白内障、眼牙指发育不全综合征及先天性心脏病等。
1、间隙连接结构
⑴间隙连接处相邻细胞质膜间的间隙为2~3nm 。
⑵连接子(connexon) 是间隙连接的基本单位。
间隙连接最重要的特征是间隙中丛集的圆柱形颗粒,这些圆柱形颗粒是一对6个亚单位排列成的中间有孔道的结构每一个六聚体称为连接子,连接子两两相对分别整合在两相邻细胞的质膜中。构成连接子的亚单位为连接蛋白。
连接子中心形成一个直径约1.5nm的孔道。通道直径通常受一些因素如膜电位、胞内pH值及Ca2+浓度等因素的调节而处于动态变化中。膜电位低落时通道关闭;pH值下降或Ca2+浓度升高均可通过改变连接蛋白的构象而使通道直径变小,甚至关闭。
⑶连接单位由两个连接子对接构成。一般来说,只有相同或相似的连接蛋白形成的连接子才能在细胞间建立间隙连接
2、间隙连接的蛋白成分
⑴已分离20余种构成连接子的蛋白,属同一蛋白家族,其分子量26—60KD不等;
⑵连接子蛋白具有4个-螺旋的跨膜区,是该蛋白家族最保守的区域。
⑶连接子蛋白的一级结构都比较保守, 并有相似的抗原性。
⑷不同类型细胞表达不同的连接子蛋白,间隙连接的孔径与调控机制有所不同。
3、间隙连接的功能及其调节机制
⑴间隙连接在代谢偶联中的作用:使代谢物(如氨基酸、葡萄糖、核苷酸、维生素等)及第二信使(cAMP、Ca2+等)直接在细胞之间流通。
①间隙连接允许小分子代谢物和信号分子通过, 是细胞间代谢偶联的基础
②代谢偶联现象在体外培养细胞中的证实
③代谢偶联作用在协调细胞群体的生物学功能方面起重要作用.
⑵间隙连接在神经冲动信息传递过程中的作用:在由具有电兴奋性的细胞构成的组织中,通过间隙连接建立的电偶联对其功能的协调一致具有重要作用。
例如:神经细胞之间的电偶联(带电离子,一般为H+,通过间隙连接通道由一个细胞内直接进入另一个细胞内)使动作电位迅速在细胞之间传播,从而没有化学突触传播兴奋时出现的时间上的延迟。
①电突触快速实现细胞间信号通讯
②间隙连接调节和修饰相互独立的神经元群的行为
⑶间隙连接在早期胚胎发育和细胞分化过程中具有重要
①胚胎发育中细胞间的偶联提供信号物质的通路,从而为某一特定细胞提供它的“位置信息”,并根据其位置影响其分化。
②肿瘤细胞之间间隙的连接明显减少或消失,间隙连接类似“肿瘤抑制因子”。
⑷间隙连接对细胞增殖的控制也有一定作用。如将转化细胞与正常细胞共培养,通常几乎不能在两种细胞间建立间隙连接,转化细胞的增殖不受抑制;当用一定诱导剂使转化细胞与正常细胞之间建立间隙连接后转化细胞的生长即受到抑制;当封闭正常细胞与转化细胞之间的通道后转化细胞的生长失控复现。
⑸间隙连接的通透性是可以调节的。
①降低胞质中的pH值和提高自由Ca2+的浓度都可以使其通透性降低
②间隙连接的通透性受两侧电压梯度的调控及细胞外化学信号的调控 。
神经细胞间的化学突触
存在于可兴奋细胞之间的细胞连接方式,它通过释放神经递质来传导神经冲动。
化学突触(synapse)是存在于可兴奋细胞间的一种连接方式,其作用是通过释放神经递质来传导兴奋。由突触前膜(presynaptic membrane)、突触后膜(postsynaptic membrane)和突触间隙(synaptic cleft)三部分组成。
突触前神经元的突起末梢膨大呈球形,称突触小体(synaptic knob)。突触小体贴附在突触后神经元的胞体或突起的表面形成突触。突触小体的膜称突触前膜,与突触前膜相对的胞体膜或突起的膜称突触后膜,两膜之间称为突触间隙。间隙的宽度约20-30nm,内含有粘多糖和糖蛋白等物质。
突触小体内有许多囊泡,称突触小泡(synaptic vesicle),内含神经递质。当神经冲动传到突触前膜,突触小泡释放神经递质,为突触后膜的受体接受(配体门通道),引起突触后膜离子通透性改变,膜去极化或超极化。
三 胞间连丝:高等植物细胞之间通过胞间连丝相互连接,完成细胞间的通讯联络。
胞间连丝(plasmodesmata)是植物细胞特有的通讯连接。是由穿过细胞壁的质膜围成的细胞质通道,直径约20~40nm。因此植物体细胞可看作是一个巨大的合胞体(syncytium)。通道中有一由膜围成的筒状结构,称为连丝小管(desmotubule)。连丝小管由光面内质网特化而成,管的两端与内质网相连。连丝小管与胞间连丝的质膜内衬之间,填充有一圈细胞质溶质(cytosol)。一些小分子可通过细胞质溶质环在相邻细胞间传递。
〔1〕胞间连丝结构 相邻细胞质膜共同构成的直径20-40nm的管状结构
〔2〕胞间连丝的功能
a实现细胞间由信号介导的物质有选择性的转运;
b实现细胞间的电传导;
c在发育过程中,胞间连丝结构的改变可以调节植物细胞间的物质运输。
细胞连接的粘附分子 (adhirin molecule of cell surface,CAM) 同种类型细胞间的彼此粘连是许多组织结构的基本特征。细胞与细胞间的粘连是由特定的细胞粘附分子所介导的。细胞粘附分子是细胞表面分子,多为糖蛋白,是一类介导细胞之间、细胞与细胞外基质之间粘附作用的膜表面糖蛋白。
粘附分子的特征
1、结构特点:分子结构分为三个部分:⑴胞外区:肽链的N端部分,一般比较大,带有糖链;⑵跨膜区:可单次或多次跨膜;⑶胞质部分:肽链的C端,一般较小,与膜骨架系统相结合,或与信息系统相连。
2、粘连分子均为整合膜蛋白,在胞内与细胞骨架成分相连;
3、多数要依赖Ca2+或Mg2+才起作用。
粘连分子的类型
1、钙粘素 属同亲性(只与表达同类钙粘素的细胞粘附)CAM,依赖Ca2+的细胞粘连糖蛋白,介导依赖Ca2+的细胞粘着和从胞外到细胞质传递信号。对胚胎发育中的细胞识别、迁移和组织分化以及成体组织器官构成具有主要作用。根据分布组织不同分为五类,N、P、E、M、R-钙粘素,30多个成员的糖蛋白家族,分子的同源性很高。
2、选择素 属异亲性CAM,依赖于Ca2+的能与特异糖基识别并相结合的糖蛋白,在血流状态下介导白细胞与血管内皮细胞之间的识别与粘附。
P—选择素:表达于血管内皮细胞、血小板、
E—选择素:表达于血管内皮细胞;
L—选择素:表达于白细胞表面。
3、免疫球蛋白超家族的CAM:许多与Ig分子结构相似、编码基因同源的蛋白分子,主要以膜蛋白形式存在于细胞表面,参与细胞识别与信号传递,介导同亲性细胞粘着或介导异亲性细胞粘着,但其粘着作用不依赖Ca2+。
4、整合素 属异亲性CAM,作用依赖于Ca2+,介导细胞与细胞之间及细胞与细胞外基质之间的识别与结合,在细胞内外信号转导中起着十分重要的作用。由a和b两个亚基形成的异源二聚体糖蛋白。人体细胞中已发现16种a链和8种b链,它们相互配合形成22种不同的二聚体整合素,可与不同的配基结合,从而介导细胞与基质、细胞与细胞之间的粘着。
粘着方式
1、细胞中主要的粘着因子家族
2、与细胞锚定连接相关的粘着因子
3、非锚定连接的细胞粘着因子及其作用部位
紧密连接(封闭连接的主要形式)
又称封闭小带(zonula occludens),存在于脊椎动物的上皮细胞间,长度约50-400nm,相邻细胞之间的质膜紧密结合,没有缝隙。在电镜下可以看到连接区域具有蛋白质形成的焊接线网络,焊接线也称嵴线,封闭了细胞与细胞之间的空隙。上皮细胞层对小分子的透性与嵴线的数量有关,有些紧密连接甚至连水分子都不能透过。
紧密连接的焊接线由跨膜细胞粘附分子构成,主要的跨膜蛋白为claudin和occludin,另外还有膜的外周蛋白ZO。
紧密连接的主要作用是封闭相邻细胞间的接缝,防止溶液中的分子沿细胞间隙渗入体内kiLkFQhw,从而保证了机体内环境的相对稳定;消化道上皮、膀胱上皮、脑毛细血管内皮以及睾丸支持细胞之间都存在紧密连接。后二者分别构成了脑血屏障和睾血屏障,能保护这些重要器官和组织免受异物侵害。在各种组织中紧密连接对一些小分子的密封程度有所不同,例如小肠上皮细胞的紧密连接对Na+的渗漏程度比膀胱上皮大1万倍。
又称不通透连接或闭锁连接,具有连接相邻细胞、封闭细胞间隙的通透及分隔极性上皮细胞质膜外叶顶区与基侧区等三重功能。
一 紧密连接是封闭连接的主要形式,普遍存在于脊椎动物体表及体内各种腔道和腺体上皮细胞之间。是指相邻细胞质膜直接紧密地连接在一起,能阻止溶液中的分子特别是大分子沿着细胞间的缝隙渗入体内,维持细胞一个稳定的内环境。
其特点是:通过跨膜蛋白相连。
二 紧密连接的结构:细胞质膜上由跨膜蛋白紧密排列形成脊线,相邻细胞的脊线相对应连接。在不同的组织中紧密连接的程度不一样,程度的大小根据脊线的多少判断。
大分子绝对不可通过,对小分子及水的封闭程度则因组织而异。
如:葡萄糖的运输:消化腔→小肠上皮细胞→结缔组织。
三 紧密连接的功能 1、形成渗漏屏障,起重要的封闭作用;
2、隔离作用,使游离端与基底面质膜上的膜蛋白行使各自不同的膜功能;
3、支持功能。 紧密连接一般存在于上皮细胞之间。Ca2+是形成紧密连接所必需的,因而体外用适当的蛋白酶及螯合剂处理上皮组织均可使紧密连接分离。
四紧密连接嵴线中的两类蛋白:
〔1〕封闭蛋白,跨膜四次的膜蛋白(60KD);
〔2〕claudin蛋白家族(现已发现15种以上)
在无脊椎动物中,有多种细胞连接方式,如:
间壁连接是存在于无脊椎动物上皮细胞的紧密连接。连接蛋白呈梯子状排列,形状非常规则,连接的细胞内骨架成分为肌动蛋白纤维。在果蝇中一种叫做discs-large的蛋白参与形成间壁连接,突变品种不仅不能形成间壁连接,还产生瘤突。
紧密连接(封闭连接)
锚定连接:黏合连接; 桥粒、半桥粒
通讯连接: 间隙连接,化学突触;胞间连丝
寄主植物抗病性类型分为几类?
第一类针对的是寄生专化性程度高的真菌和细菌,对此类病原真菌,抗病性多为小种专化的,也是相当短效的显性主效抗病基因(R基因)控制的抗病性是典型的非持久抗病性R基因与病原菌无毒基因的互作符合基因对基因学说病原菌的无毒性Avr基因被R基因所识别,诱发过敏性反应类型的抗病性无毒基因突变后,不能被匹配的R基因识别,恢复了毒性,且没有可见的适合度损失病原细菌的许多Avr基因则具有双重功能,决定致病性与毒性其毒性突变常影响病组织中的细菌群体增殖,引起病斑大小数量和形态的变化无毒基因突变引起的不识别,可能影响或不影响毒性功能以及病原菌的适合度
但是有一些主效R基因长期使用后仍然有效,包括前述引起过敏性坏死反应的主效基因和不引起过敏性坏死反应的mlo基因
第一类病原菌的持久抗病性,大多是kiLkFQhw微效基因控制的定量抗病性,表达微效基因的加性作用,无小种专化性对寄生专化性程度高的真菌和细菌,不论抗病性是主效基因抑或微效基因控制的,多有病原菌物种水平的专化性(pathogen-specific),即只针对一种病原菌,对同属的其他种类无效
第二类针对的是寄生专化性程度较低的病原菌,寄主抗病性通常是定量抗病性,高度持久,不仅没有小种专化性,而且对一种病原菌的抗病性,常对其他近缘病原菌也有效例如向日葵对核盘菌(Sclerotiniasclerotiorum)的抗病性对小核盘菌(S.minor)也有效
第三类针对的是中间类型病原菌,抗病性既有主效基因控制的高水平抗病性,也有微效基因抗病性,前者倾向于持久抗病,尽管是小种专化的,后者则高度持久
第四类针对的是病毒,许多作物对病毒都有主效基因抗病性,其持久度表现不一,有的很短,有的很长,大多数基因的抗病性都较持久或非常持久与真菌和细菌不同,对病毒的过敏性坏死类型抗病性相当持久对病毒的定量抗病性也是持久的,定量抗病性的主要特征是减少侵染概率,降低发病率,是多基因控制的
小种专化性并不是抗病性持久度的唯一指标许多影响病害流行和小种消长的因素,也影响品种抗病性的持久度匹配毒性小种发展越快,菌量越大,品种的有效期就越短
植物病毒基因组分为哪几种类型?各有什么特点?
绝大多数植物病毒是由核酸构成的核心与蛋白质构成的外壳组成的,极少数还含有脂肪和非核酸的碳水化合物。植物病毒核酸类型有 ssRNA(单链RNA)、dsRNA(双链RNA)、ssDNA (单链DNA)和dsDNA(双链DNA)。但绝大多数含ssRNA,无包膜,其外壳蛋白亚基或呈二十面体对称,或呈螺旋式对称排列,形成球状或棒状颗粒.
大多数植物病毒是由单一种外壳蛋白组成形态大小相同的亚基,多个亚基组成外壳。外壳内含有携带其全部基因的病毒核酸。有的植物病毒的核酸分成1~4段,分别装在外壳相同的颗粒中,如烟草脆裂病毒的RNA分成两段,分别装在两种颗粒中,分子量大的一段装在长棒状颗粒中,小的一段装在短棒中,故称二分体基因病毒;又如雀麦花叶病毒的RNA分成4段,RNA1、RNA2、RNA3和RNA4分别装在外形大小相同的3种球形颗粒中,故称三分体基因组病毒。二分或三分总称为多分体基因组病毒。
另外再补充一下:
1892年..伊万诺夫斯基与1898年M.W.拜耶林克证明,烟草花叶病为比细菌还小的病原体所引起,可通过病叶汁液传染。20世纪初,已经知道昆虫能传播植物病毒病,如叶蝉传播水稻矮缩病。1930年,..麦金尼和汤清香发现病毒可以变异,产生致病力强弱不等的毒株,而且不同毒株之间有干扰作用。1935年,美国W.M.斯坦利第一次把烟草花叶病毒(TMV)提纯结晶,F.C.鲍登和N.W.皮里进一步证实结晶物为核酸与蛋白质所构成的核蛋白,从而揭露了病毒的本质。1939年首次在电子显微镜下看到 TMV烟草花叶病毒是杆状颗粒。1956年证明TMV的核糖核酸(RNA)能独立侵染烟草,第一次证明RNA也是遗传信息的载体。60年代将TMV外壳蛋白和 TMV的RNA在试管内重组成完整的、有侵染性的TMV颗粒。TMV的外壳蛋白的一级结构是第一个被完全测定的病毒蛋白。利用 TMV第一次证实病毒核酸的突变反映在外壳蛋白的氨基酸序列上。
其实,植物病毒不一定都是有害的,比如说:在16世纪早期,荷兰人对一种植株上有着条斑的郁金香极为珍视,不惜重金购买来装扮自己的花园。这种郁金香的颜色不是单一的,它具有缤纷杂乱的花纹,如同喷溅在一起的各种颜色。这种自然之美的奥秘是什么呢?是一种植物病毒。
植物病毒对植物生长产生的危害作用是使植物的叶或花改变颜色。正是因为病毒的侵染,使花瓣上的原有颜色上产生了花斑或条纹,使花色更加奇异、绚丽,起到对花卉的美化作用。
早在18世纪,人们就利用病毒感染引起的植物叶和花的变色,创造新的花卉品种。感染郁金香碎色病毒的杂色花,呈白色花斑和条纹。感染香石竹斑驳病毒的杂色花,也因单色花质地颜色的不同,分为白色、黄色、浅绿色、浅红色等,有五六种杂色花类型,花斑纹都不相同。虞美人杂色花单色红色花经病毒感染后,在花瓣上出现白色的细条纹,条纹间距不均,色彩鲜艳美丽。
植物抗病基因从结构和功能上可分为几类,有什么特点及功能
①富含亮氨酸重复序列蛋白类(1eucine-rich
repeat,
LRR)如番茄Cf2等;
②核苷酸结合位点及富含亮氨酸重复序列蛋白类(nucleotide
binding
site,NBS-LRR);
如Pib
③毒素还原酶类,
如玉米HM1基因。
④富含亮氨酸重复序列蛋白激酶类(LRR-kinase),
如水稻Xa21等。
⑤Ser/Thr
蛋白激酶类(STK),
如番茄Pro等。
成熟组织是由分生组织细胞分裂所产生的细胞,经过生长、分化和特化而来的组织。成熟组织在其形态、结构和生理功能上已经稳定,一般不表现分裂活性,因而有永久组织(permanent
tissue)之称。某些成熟组织在一定条件下,通过脱分化可转变为次生(或侧生)分生组织。
成熟组织是植物生长和成熟的基础,是形态、结构和生理功能各不相同的组织,也是植物体内分布最广、占比例最大的组织。根据成熟组织的细胞来源和组成特征,可将其分为简单组织和复合组织。
成熟组织按其功能不同可分为:
保护组织、薄壁组织、机械组织、输导组织和
分泌组织。
1
保护组织可分为表皮和周皮,覆盖体表,起保护作用。
2
薄壁组织(基本组织)壁薄,排列疏松。据功能不同,又可分为:同化组
织、吸收组织、储藏组织、通气组织和传递组织。
3
机械组织为植物体的支持组织。又可分为厚角组织和厚壁组织(包括石细
胞)
4
输导组织是体内长距离输导水分和有机物的组织。包括导管,筛管和伴胞。
5
分泌组织包括内分泌结构和外分泌结构。
文章标签:
上一篇:秋天叶子落下哪面朝上?
下一篇:玉米种子的各部分名称是什么?