日夏养花网

您好,欢迎访问日夏养花网,我们的网址是:http://www.rixia.cc

植物病原线虫的定义

2021-05-18 07:40:14 分类:养花问答 来源: 日夏养花网 作者: 网络整理 阅读:186

昆虫病原线虫定义

昆虫病原线虫e68a84e8a2ad3231313335323631343130323136353331333234306462

昆虫病原线虫

在所有的用于昆虫生物防治的线虫中的研究中,斯氏线虫科和异小杆线虫科引起了人们广泛的兴趣,有关它们的报道呈指数增长。这两科线虫与嗜线虫致病杆菌属(Xenorhabdus)互惠共生,它们在行为上相似,被认为是一体的。

这些线虫的自由生活的、不取食的侵染期幼虫既可属于拟寄生物或捕食者,又可称之为致病微生物。作为拟寄生物或捕食者,它们具有能动的化学感受器;作为病原物,它们具有高毒力,能迅速杀死寄主,它们易在体外培养,具有很高的再生产潜力,有数量反应却没有能动性反应。它们有广泛的寄主范围,对脊椎动物、植物和其它非靶标生物却很安全,在美国是免注册产品,它们易应用于标准的喷雾设备,可以与许多化学杀虫剂混用,经得住遗传的选择性。这些线虫,因为它们作为嗜线虫致病杆菌的传播媒介,所以被称为昆虫病原物,加强了昆虫线虫学和昆虫病理学的联系。

关于昆虫病原线虫的报道多数来自1985年后,包括了生物学和生物防治、遗传学生物工程学、动物流行病学、操作技术及安全性等方面的内容。在日本汇编了研究指引和关于斯氏线虫和异小杆线虫的全面的文献目录。而且,一本关于斯氏线虫和异小杆线虫及其共生菌的书最近出版了。因此,这篇文章提供了线虫及其共生菌的简要背景知识,重点集中在这些线虫的最近的研究进展和目前的关键问题及研究方向。

分类学

线虫(Nematodes)

昆虫病原线虫科是单一属的,斯氏线虫有10个种,异小杆线虫有3个种。几种分类学在属和种水平上的变化引起了文献上的混乱。在斯氏线虫科中,斯氏线虫属是一个被广泛接受的属。锯蜂线虫(Steinernema Kraussei)曾被认为是一个种,Kraussei作为nomen dubium,但是这个问题一直都没有解决,S.kraussei的分类地位一直都没有确定。苹果蠹蛾线虫(Steinerernema carpocapsae)是研究最多的昆虫病原线虫种,在1983年和1989年的文献中也指芫菁线虫(Steinernema feltiae)。后来确定feltiae为有效种名,代替了bibionis种,终止了一些混乱,Poinar建议的“feltiae(=bibionis)”的写法一直被采用。

在异小杆线虫属中有两个主要的变化。第一,Heterorhabditis bacteriophora和H.heliothidis已被鉴定为同种,并已被确认为同种异名。第二,H.heliothidis的一个最初描述为New Zealand的种群已经被重命名为H.zaelandica。显然,在文献中斯氏和异小杆线虫的分类http://www.rixia.cc混乱现象需要尽可能的减少。

线虫的分离菌株称之为品系。例如, S.carpocapsae的许多品系用个体(如ALL,Hamm,Pye)、产地(如Italian,Umea,Mexican)、寄主昆虫(如Agriotos,Rhagolites)或编号(如DD-136,P7)来加以区分。一些斯氏和异小杆线虫的的品系或分离菌株,由于缺少足够的生物学和分类学特征,目前仍有未描述的和没有发现的种。
昆虫病原线虫复是指一类专性寄生制昆虫的线虫,它消化bai道内携带有病du原菌,当它从昆虫zhi消dao化道或体壁侵入昆虫寄主体内后,共生菌从线虫体内释放出来,在昆虫血液内增殖,最终使寄主昆虫感染病原杆菌患败血症而死亡。

目前世界上描述定名的这类线虫,主要是斯氏线虫科和异小杆线虫科的线虫。昆虫病原线虫生日夏养花网活史中有一个侵染期线虫阶段,称之为侵染期线虫,侵染期线虫不取食,独立于昆虫体外自由生活,在自然界土壤中可分离到昆虫病原线虫的侵染期幼虫。人们利用这一生物学特性,进行人工繁殖,进入90年代,美国研究成功可在发酵罐中培养或是固相法大量生产侵染期线虫,成为一种生物杀虫剂进入市场。

植物病原菌物,病毒,线虫原核生物的传播途径

植物(植物)是一类生物圈。一般有叶绿素,没有神经,没有感觉。分藻类,地衣回,苔藓,蕨类和答种子植物,种子植物又分为裸子植物和被子植物。植物能够进行光合作用的陆地多细胞真核生物。但许多多细胞藻类可生物光合作用,它们与植物之间最重要的区别是水生和陆生。根据这样的定义,我们可以;植物适应这里的生活在陆地上的多细胞真核生物光合作用,从根,茎,叶组成,表面的角质层,有洞,输导组织和雌/雄配子囊,在胚胎发育中的配子囊。植物和藻类的指令完全不同的五种海藻产业体系的重要区别,所以包括原生生物。但在另一方面,藻类和植物有许多共同之处,无论是真的应该属于不同的社会,仍有争议。

如何理解植物病原细菌学?

phytobac teriology

何礼远

研究引起植物病害的细菌生物学特性的科学。是植物病理学和细菌学的一个分支学科。植物病原细菌有300种左右,目前国际上已确认的约250个种、亚种(subspecies)和致病变种(pathovar)。有些种类因尚不能人工培养,无法鉴定并明确其分类地位。

简史

荷兰吕文虎克(A.van Leeuwenhock)于1683年发现细菌,但未能证明细菌与植物病害有关。1850年德国米泽尔里奇(Mistcherlich)借助显微镜观察到活动的液状体能引起马铃薯细胞壁崩解,认为可能是一种弧菌(Vibrio)。他被公认是第一个发现细菌可引起植物病害的科学家。美国的布雷尔(Thoma J.Burrell)于1877年在伊利诺斯州证明梨和苹果的火疫病是由细菌引起,且用病树上的胶状溢脓进行人工接种获得了成功。奥热尔(J.C.Arthur)于1885年在纽约州采用火疫病的纯培养细菌进行人工接种和再分离,从而证实细菌是植物病害的先例。美国F.史密斯(Erwin F.Smith)对瓜类萎蔫病、甘蓝黑腐病和茄科植物青枯病等多种细菌性病害作了大量的系统研究,并与德国费歇尔(A.Fischer)于1905年出版了《细菌与植物病害的关系》(Bacteria in Relation to plant Diseases)一书,是世界上第一本植物细菌病害的专著。20世纪20年代以后,植物细菌的研究进入蓬勃发展阶段,对病原细菌形态学特征观察和培养性状试验,深入到生理代谢和生物化学特性的研究。1968年在英国伦敦召开了第一次国际植物细菌病害会议,标志着植物病原细菌学初步形成一个独立学科。以后先后多次召开了植物病原细菌的国际学术会议,并出版了论文专集。国际植物病理学会专门设立植物病原细菌学委员会。

研究内容 主要研究细菌形态、染色反应、培养性状、生长与营养、生理和生物化学特性、血清学特性、遗传和变异、鉴定和分类(见植物病原细菌分类),致病特性、地理分布、传播方式、流行生态、病原物与寄主植物相互作用的物理机制、生理生化机制和分子生物学机制,细菌病害的防治策略和防治技术。

发展趋势

20世纪80年代中期以来,随着分子遗传学和生物技术的迅速发展和向其它生物学科渗透,目前植物病原细菌学的研究已进入分子生物学阶段。

参考书目

Krieg,N.R.et al.,Bergey's Manual of Systematic Bac-teriology,vol.1,Baltimore,London,1984.

Peter,H.A.Sneath et al.,Bergey's Manual of Sys-tematic Bacteriology,vol.2,Baltimore,London,Los Angeles,Sydney,1982.

植物病原真菌鉴定

identification of plant pathogenic fungus

王克荣

直接观察或借助实验手段确认某种植物病害的病原真菌,并给予正确学名的过程。植物病原真菌鉴定包括病害标本采集、症状描述、病原真菌形态特征检测,将观察结果与真菌分类检索表中有关种的描述逐一加以核对,如基本一致,即可认为是该已知种所致病害,而予以相同的拉丁学名。有时所采植物病原真菌需要分离培养,经过培养性状的观测和致病性鉴定并进行病原真菌生理生化试验等均作为辅助鉴定手段。

病原真菌鉴定的步骤主要有:标本采集、症状观察、形态观测、真菌分离培养、培养性状和生理生化测定等。

标本采集

真菌病害标本是研究病害症状和病原真菌形态及生理特征的基础材料,经过田间观察记载后,进一步对病害标本在室内进行病原真菌鉴定。植物病原真菌病害标本的采集要求症状具有典型性,即带有病菌子实体的标本。标本上的病斑种类力求单纯,以利于确定是一种或几种病害。标本应有一定数量的复份,对寄主名称、病害发生环境、条件、采集时间、地点等进行详细记载。采集标本时应注意对寄主植物的鉴定,一些病原真菌(白粉菌、黑粉菌和锈菌等)当寄主植物分类地位不明确时很难鉴定出种名。对不熟悉的寄主植物,应采全其花、果实、种子等部位以便鉴定。适于干制的蜡叶标本,应随时压于标本夹吸水纸中,并经常换纸,使其干燥。

症状观察

病害对植物全株的影响(有无凋萎、萎缩、畸形或生长特性的改变等),病部坏死斑的形状、数目、大小、色泽、子实体排列及有无轮纹等;腐烂组织的颜色、气味、质地等;病部产生的病原真菌菌丝体和子实体的特征,都是症状观察和描述的重要内容。一般常见真菌病害,经过症状观察,即可以对致病的真菌作出初步判断。但症状对病原真菌的鉴定不完全可靠,不同的病原物有时可产生相似的症状,反之,一种病害症状可随寄主和发病环境条件而改变。

病原真菌的形态观测

病原真菌的鉴定以病菌形态鉴定为准。借助显微镜,对病原真菌的菌丝体和其它营养体的形态、结构和大小,孢子的形态、颜色、大小,产孢方式,子实体的形态结构和产生部位等进行观察和测量。如标本尚未形成病菌子实体,可将标本经保湿处理,即可见子实体的产生。标本表面产生的菌丝体和子实体,可直接用针挑取少许,置加有一滴浮载剂如水或乳酚油(苯酚40毫升,乳酸20毫升,甘油40毫升,蒸馏水20毫升配制而成)的载玻片上,加盖玻片后在显微镜下检视。埋生于植物组织中的真菌子实体,需要将材料切成薄片再制成玻片标本进行显微观察。植物组织内真菌子实体的制片常用徒手切片和石蜡切片两种方法。①徒手切片。将病组织湿润后用手指轻压,用刀片将材料切成薄片,置于载玻片上的水滴中,用挑针选择带有子实体的厚薄适中的病组织进行检测。植物病原真菌的鉴定常用这种方法。②石蜡切片。将病害标本用固定剂固定后脱水,经石蜡渗透及包埋,然后用轮转切片机将包埋病组织的石蜡块按一定方向切成薄片,将薄片粘贴于载玻片上,去蜡后进行染色,再将切片材料透明即可封固,进行镜检。这种方法步骤多,且易使材料变形和变色,一般适用于教学或研究真菌侵染过程的制片。

鉴定植物病原真菌时还要掌握该病原真菌的有关测量数据,如孢子的长宽度、孢子梗的长度、子囊壳的直径等。真菌营养体、孢子和子实体的测量,可借助显微镜测微尺进行。

真菌的分离培养

真菌病害不能单纯依靠子实体的观察鉴定而作出正确诊断。因为发病部位检查到的真菌,不一定是致病的病原物,有可能是在植物组织死亡后腐生的某些真菌。因此,真菌病害的诊断,必需经过病原菌的分离培养和接种试验,确定该病原菌致病性和症状。真菌的分离是将致病的真菌与其它杂菌分开,经纯化,使之扩大繁殖而得到致病菌的纯培养。植物病原真菌的分离常采用组织分离法和孢子稀释分离法。①组织分离法。切取小块病组织,取病健交界处边缘部分,经表面消毒、灭菌水冲洗,移植琼脂培养基平板上培养,形成菌落,如培养性状表现一致,可自菌落边缘挑取菌丝体纯化培养,再进行致病性测定和菌种鉴定。②孢子稀释分离法。以灭菌水将产生的病菌孢子配成悬浮液,用移植环蘸取悬浮液在琼脂平板上划线,在显微镜下沿线观察并用挑针挑取单孢子置琼脂培养基上培养。有时还可通过单孢子分离获得纯菌系菌株。真菌的培养有固体培养和液体培养两种。

病原真菌培养性状

培养性状的描述和记载是植物病原真菌鉴定中的重要资料,包括菌落质地、形状、孢子堆的干湿性,子实体和休眠结构的形成和所需时间;菌落正面和背面的色泽、有无色素分泌,有无特殊气味,生长率等。培养性状的描述要注明特定的培养条日夏养花网件,有时需用几种培养基进行培养观察。一些真菌的分生孢子器或子囊壳在琼脂培养基上不易形成,往往需要采用自然基质,进行模拟自然条件培养。有的真菌子实体的形成需要特定的光照条件。

生理生化测定

生理生化方法多用蛋白电泳技术和同工酶检测技术。在疫霉菌和毛霉菌的鉴定中,当采用形态观测方法无法区分“种”时,常用蛋白电泳方法辅助鉴定。近年来同工酶酶谱比较方法在植物病原真菌的鉴定中应用渐多。

参考书目

方中达著:《植病研究方法》,农业出版社,1979,北京。

Dhingra,O.D.,and Sinclair,J.B.,Basic Plant Patholo-gy Methods,CRC Press,1985,Boca Raton,Florida.

植物弹状病毒组

Plant rhabdovirus group

濮祖芹

属单链核糖核酸,有包膜,弹状或杆菌状基因组病毒。是既侵染植物又侵染无椎脊动物的一组病毒。其粒子结构和组分与动物弹状病毒相似,因而共同编排在弹状病毒科(Rhabdoviridae)内。名称源于希腊文“rhebdos”,杆状之意。植物弹状病毒组下分两个亚组。亚组A的典型成员是莴苣坏死黄化病毒(Luttuce necrotic yellow virus,LNYV),亚组B的典型成员是马铃薯黄矮病毒(Potato yellow dwarf virus,PYDV)。

病毒性状

病毒粒子长100~430纳米,直径45~100纳米,呈杆菌状或炮弹状,端部呈半圆形或一端钝平,中部为直杆状。有脂蛋白包膜。核衣壳上有核糖核蛋白以螺旋状缠绕而形成的精细横纹。粒子中含有4~5种蛋白质。基因组是一个单分子的ssRNA,负功能,含有一种与核衣壳相结合的依赖于RNA的RNA聚合酶。病毒在活体外稳定性较差,钝化温度为50~52℃,在25℃条件下存活期少于1天,汁液中的病毒浓度为1~10毫克/升。

病毒粒子的组分

植物弹状病毒粒子的蛋白质含量为70%,脂类为25%,多糖为4%,RNA为1%。蛋白质种类达4~5种之多。N蛋白是衣壳蛋白,分子量为55~64103;G蛋白是一种糖蛋白,分子量为71~92103,呈六角形排列在膜上,形成刺突;L为大蛋白,分子量145103,具有多聚酶活性。M蛋白的分子量为22~25103,N3蛋白的分子量为40103,这两种蛋白质也具有酶的活性。还有一些病毒成员的M蛋白由M1和M2蛋白所取代,这两种蛋白质的分子量分别为27~44103和22~29103。

基因组的性质

病毒的基因组是一种非侵染性的单链RNA,分子量4.2~4.6106,负链。在寄主的细胞内,负链的ssRNA首先合成一条与之互补的正链,作为mRNA。病毒核酸没有侵染性,经过非离子清洁剂处理、脱去脂蛋白包膜而释放出来的核衣壳具有侵染性。基因组核酸的5′端为GAAGCAppp,无帽子结构,3′端无polyA区;mRNA的5′端的帽子结构是m7GpppAmACAG,3′端有polyA区。

分布和为害

植物弹状病毒地理分布广,热带、亚热带和温带地区都有报道。有一部分病毒成员分布较局限,可能与其传毒介体的分布有关。引起重要的植物病害的有水稻暂黄病、小麦丛矮病、玉米花叶病、马铃薯黄矮病和莴苣坏死黄化病等都曾在一些地区造成相当严重的经济损失。植物弹状病毒可使寄主表现花叶、黄化、坏死、环斑、矮化等各种症状,而没有一种主要的症状能作为这一组病毒的标志。

病毒与传毒介体的关系

植物弹状病毒由吸吮式口器的节肢动物传播均为持久性循回型。除咖啡环斑病毒(Coffeering spot virus)由螨(Brevipalpus phvenicis)传播、甜菜叶皱病毒(Beet leaf curlvirus)由甜菜蝽象(Piesma quadrafum)的成虫和若虫传播外,其余均由同翅目的蚜虫、叶蝉和飞虱传播。病毒和介体有高度的特异性,一种病毒往往只由某一种介体或一些相关的种传毒。有一部分病毒如北方禾谷类花叶病毒(Northern cereal mosaic virus)、马铃薯黄矮病毒、水稻暂黄病毒(Rice transitory yellowing virus)、草莓皱缩病毒(Strawberry crinkle virus)、苦苣菜黄脉病毒(Sowthistle yellow vein virus)和小麦条点花叶病毒(Wheet striate mosaic virus)等均在介体体内增殖。苦苣菜黄脉和莴苣坏死黄化病毒可经蚜虫卵传毒,大麦黄条点花叶病毒(Barky yellow stri-ate mosaic virus)经飞虱卵传毒。介体终身带毒,但随着虫龄增长传毒效率渐减。延长介体获毒和接毒时间可增加传毒效率。

寄主细胞的病理变化

有一些病毒成员的粒子在寄主的细胞核内外膜之间发育,并累积在细胞核周围的空间,导致细胞核和细胞质内陷。另外一些病毒成员的粒子在寄主细胞质内发育,或与内质网相结合,粒子累积在囊状体中。病毒引起寄主细胞畸变,如核仁和线粒体肿胀,或使染色质、膜质的囊状体消失或出现颗粒状的核质。

病毒成员间的相互关系

该组病毒分两个亚组。亚组A的病毒粒子在寄主的细胞质内发育,含M蛋白,在活体外可迅速地检测到转录酶的活性。这些性状与侵染脊椎动物的水泡性口炎病毒(Vesicular sto-matitis virus,VSV)相同。此亚组成员还有大麦黄条点花叶病毒、北方禾谷类花叶病毒等16种。亚组B的粒子在核内外膜之间发育,累积在核周围的空间,含M1和M2蛋白质,活体外转录酶活性低,有些性质与狂犬病毒(Rabies virus)相同。此亚组成员还有水稻暂黄病毒,苦苣菜黄脉病毒等20余种。

侵染麦类的大麦黄条点花叶病毒、北方禾谷类花叶病毒、小麦褪绿条斑花叶病毒和小麦丛矮病毒粒子结构和传毒介体都相同,冬小麦花叶病毒与上述病毒寄主范围相似,这些病毒的相互关系还缺乏深入研究。

植物呼肠孤病毒组

group

梁训生

属于双链核糖核酸(dsRNA)、无胞膜的球状分段基因组病毒。本组又分为植物呼肠孤病毒和菲济病毒两个亚组。植物呼肠孤亚组病毒的核酸含量为22%,其核酸总分子量为16106左右,其中12个分段基因的片断分子量分别在0.3~3.0106。病毒外壳蛋白质含量为78%,蛋白质中8个多肽组分的分子量为35~160103,其多肽由多种氨基酸所组成。呼肠孤病毒组的编码程式为R/Z∶0.35~2.55/22∶S/S∶SI/Au。组名是1975年在印度马德里第二届国际病毒分类委员会上制定的,隶属于呼肠孤病毒科(Reoviridae)。组名由希腊语phyton(植物)和英语respiratory、enteric及orphon(呼吸道、肠道及孤儿)的缩写phyto和reo后缀以virus再拉丁化构成。典型成员为三叶草伤瘤病毒(Clover wound tumor virus),其他成员为水稻矮缩病毒(Rice dworf virus)。近年有学者认为中国发生的水稻簇矮病毒(Rice bunchy stunt virus)也属于此组。

形态结构

在电子显微镜下,病毒粒子为球状(正20面体),稍成角状,无突起,直径近似70纳米,伤瘤病毒的核心直径约59纳米。正20面体具有对称的20个三角形面、12个顶角和30个边,属于532重对称结构,病毒粒子内部的RNA分子具有12个基因片段,其碱基组成是鸟嘌呤和胞嘧啶占38%~44%。外壳蛋白质由多肽链构成,包括8种多肽,各种多肽组分又是由各种氨基酸组成。在电子显微镜下,病组织中可见到病毒原质(viroplasma),在光学显微镜下,病组织中可见到囊状内含体。

理化特性

病毒粒子的分子量近似65106,沉降系数S20w为510S。吸收光谱260纳米/280纳米比值为1.55。病毒在酸碱度pH值6.6~6.61最稳定,对氟利昂及四氯化碳具有抗性。病毒在常温下不稳定,如伤瘤病毒在0℃时的侵染性可保持一年,而水稻矮缩病毒在0~4℃时,其病叶榨汁体外存活期仅有2~3天。

生物学特性

本组病毒在自然界的寄主范围窄。如伤瘤病毒在自然界可侵染叶蝉,但是通过人工用叶蝉接种时,却可以侵染20科以上的双子叶植物。水稻矮缩病毒在自然界仅侵染水稻和叶蝉,人工接种时却可以侵染小麦、大麦、黑麦、黍、稗及早熟禾等禾本科植物。受伤瘤侵染的三叶草,主要特点是根部长瘤。也有系统性的叶脉变粗症状,在少数植物上还可产生茎瘤。水稻矮缩病毒可使水稻叶片产生白色斑点,全株矮缩等。叶蝉是该组病毒的寄主昆虫,因为病毒在叶蝉体内可以增殖,属于持久性传毒关系,同时还可经卵传毒。如伤瘤病毒可在叶蝉体内增殖,但是人工传染时,病毒必须首先通过叶蝉若虫细胞的诱导培养以后,注射到叶蝉体腔内方能获得带毒叶蝉,这种带毒叶蝉才能将伤瘤病毒传染到三叶草等植物上去。叶蝉传毒时,需从病株上取食1分钟以上才能获毒,其循回期约2个星期,叶蝉一旦获毒就建立持久性的传毒关系,可以终身带毒。黑尾叶蝉还能经卵传染水稻矮缩病毒。伤瘤病毒可以侵染拟圆痕叶蝉(Agalliopsis novella)、缢圆痕叶蝉(A.constricta)和四点圆痕叶蝉(A.quad-ripunctato)等;水稻矮缩病毒侵染黑尾叶蝉(Nepho-tettix cincticeps)、二点黑尾叶蝉(N.apicalis)和电光叶蝉(Inazuma dorsalis)等。

株系与血清学

伤瘤病毒有亚介体株系、前介体株系及介体株系(又称野生株系),但是有的株系无侵染性或具有弱侵染性。本组病毒具有抗原性,可以制备抗血清。

植物寄生线虫

plant parasitic nematodes

程瑚瑞

以藻类、苔藓和高等植物作为营养来源的一类线虫。约占记载的15000种线虫中的六分之一。多数植物寄生线虫是专性寄生物,少数虫种既有为害高等植物的能力,也能噬食真菌菌丝而正常生长、发育和繁殖。

寄生植物的线虫,有人认为是由噬真菌的以及寄生藻类和捕食小动物的线虫演化而来。在距今2.6亿年的墨西哥琥珀内,曾发现1种取食真菌的滑刃线虫化石。演化过程中出现的形态变化,主要是在线虫口腔内出现针刺状口针。植物寄生线虫都有口针或类似的功能结构,即口腔口针(stomatostylet)、齿针(odontostylet)或瘤针(onchiostylet)。

在寄生高等植物的垫刃线虫目内,其寄生性的演化途径是从外寄生向半内寄生与内寄生发展,具有高级寄生性的典型代表为定居型内寄生的根结线虫和胞囊线虫。

分布和为害

植物寄生线虫广布全球,但各地的虫种不同。寄生线虫与其主要寄主的地理分布大致吻合。如稻干尖线虫分布在全世界稻作区,柑橘根线虫在柑桔种植园普遍发生。相似穿孔线虫和香蕉的分布几乎一致。线虫的地理分布受气候条件和土壤类型的影响。温度对线虫分布的制约最明显。大多数根结线虫适应温热气候,在热带和亚热带普遍发生;而大多数球形胞囊线虫(Globodera)与部分胞囊线虫如甜菜胞囊线虫及胡萝卜胞囊线虫生育适温约在15~20℃,适应冷凉气候,常分布温带以及热带的高海拔地区。部分植物寄生线虫的分布与特定的土壤类型紧密联系。根结线虫一般分布在砂土地区,起绒草茎线虫[Ditylenchus dipsaci(Khn)Filipjev]适应粘重土壤。

每种栽培植物几乎都能受到线虫为害。如1990年英国J.布里奇等(John Bridge et al.)与美国L.W.邓肯及以色列E.科恩(Larry W.Duncan et Eli Cohn)综述稻作和柑橘的寄生线虫分别为13属、30种和8属、16种。线虫不仅直接侵染植物,诱发多样的根部病变(根结、肿根、短根、根斑和发根)、叶斑、地上部矮缩、畸形甚至全株萎蔫,导致减产,并且可与病菌复合侵染植物和传播植物病毒。许多植物根病如枯萎病、黄萎病和疫霉病都可以是病菌与病原线虫联合侵染的复合病害,线虫并能加重、加快这些根病的发生发展。在小麦蜜穗病[Clavi-bacter tritici(Hu-tchinson)Davis et al.]等少数病害中,线虫则是不可缺少的病原之一。自1958年首次记载线虫传播植物病毒以来,至今已知20多种矛线目线虫(Dorylaimida)可以传播10多种植物病毒。

图 典型植物寄生线虫形态右:雌虫 左:雄虫(仿Agrios)

总体形态

典型植物寄生线虫似线条,放大的虫体呈纺锤形或梭形,从中部向两端渐细,大致长0.2~12毫米和宽0.01~0.05毫米不等。少数类群的雌虫膨大成梨形、柠檬形、肾形、珍珠状或其它不规则囊状(图1,2)。线虫无色,不分节。虫体最前端是由唇片组成的唇部或称头部。唇片一般6枚或少于6枚。肛门以后的虫体是尾部。在头部、尾部之间的虫体称为体部。头部与其它部位往往有缢痕相隔。头内有不同角化程度的头架。在头部和尾部分别包括神经系统的侧器(amphids)、乳突(papillae)和尾感器(phasmids)等感觉器官。线虫纵向分为背区、右侧区、左侧区和腹区,两侧对称。线状线虫往往不同程度地向腹面弯曲,弯曲显著的呈弓形、C形或螺旋状等,肛门、阴门和排泄孔都在腹面。线虫的基本结构是由两条相套的体管即外体管或体壁和内体管或消化道组成。内、外体管之间为充满体液的假体腔。在体壁内除消化道外,还有生殖、神经及排泄各生理系统。生殖系统是在线虫由幼虫发育为成虫过程中逐步发展和完善起来的。线虫没有循环系统和呼吸系统。

图2 多数重要植物寄生线虫(雌虫)的形态和相对大小

1.长针线虫属;2.锥线虫属;3.刺线虫属;4.粒线虫属;5.针线虫属;6.纽带线虫属;7.盘旋线虫属;8.鞘线虫属;9.茎线虫属;10.滑刃线虫属;11.矮化线虫属;12.毛刺线虫属;13..穿孔线虫属;14.短体线虫属;15.轮线虫属;16.针线虫属;17.异皮线虫属;18.根结线虫属;19.半穿刺线虫属;20.环线虫属;21.肾形线虫属;22.螺旋线虫属(仿Agrios)

类群

传统的线虫分类系统将线虫划归为线形动物门或假体腔动物门中的线虫纲,下设2个亚纲,即尾感器线虫亚纲和无尾感器线虫亚纲,再分为10多个目。自20世纪80年代以来,愈来愈多的线虫学家提倡线虫独立成为线虫门,下设尾感器线虫纲和无尾感器线虫纲2纲,包括近20目。至1980年全球记载的线虫约15000种,多数以取食细菌为主,属于自由生活线虫,少数寄生人和动、植物。植物寄生线虫有2600多种,分别属于垫刃线虫(tylenchids)、滑刃线虫(aphelenchids)和矛线线虫(dorylaimids)3大类群。

矛线线虫在植物寄生线虫中占的比例很小,属于矛线线虫目的长针线虫科或毛刺线虫科。绝大多数植物寄生线虫为垫刃线虫和滑刃线虫,它们的分类地位在不同分类系统中有所不同。1980年英国西迪克(M.R.Siddiqi)首先提出,垫刃线虫和滑刃线虫分别属于垫刃线虫目和滑刃线虫目,但美国麦捷蒂(A.R.Mag-genti),根据这两类线虫共同起源于取食真菌的双胃线虫(diplogasterids)的分析,主张它们同属于垫刃线虫目,在垫刃目内的滑刃线虫亚目包括所有滑刃线虫。

生活史

植物寄生线虫的个体发育有卵、1~4龄幼虫和成虫各个阶段。从卵发育成1龄幼虫后,每经历1阶段蜕皮1次。通过4次蜕皮,最终发育为成虫。在蜕皮过程中线虫停止活动并中断取食,蜕去体表角质膜与衬托在口腔、口针腔、食道腔、排泄管、阴道、泄殖腔及直肠内壁上的角质膜,换上由下皮分泌形成的新角质膜。在蜕皮同时线虫也更新口针前部的针锥。垫刃线虫(tyle-ncKOTvdRKZhids

重要病原线虫有哪些?

胞囊线虫的种类多,均可对寄主造成不同程度的危害。重要的虫种有大豆胞囊线虫、马铃薯胞囊线虫、燕麦胞囊线虫和甜菜胞囊线虫。

大豆胞囊线虫

H.glycines Ichinohe

诱发大豆黄矮病。主要分布在中国、美国、日本和朝鲜等国。在中国淮河以北特别在东北、华北、安徽和江苏北部的大豆主产区广泛发生。胞囊线虫引起大豆减产的幅度一般在5%~20%左右。黑龙江省在1986年有约67万公顷大豆受害,严重发病的高达13万多公顷。美国1979年因为这种线虫为害,大豆减产15.3亿公斤,损失4.2亿美元。受害大豆地上部矮黄,荚小籽少或不结实,根系发育受阻,根瘤减少或缺,后期在病根表面出现许多黄—褐色小点为病原雌虫和胞囊。病株抗逆力弱,增加了对镰刀菌等病原物的感染性。

大豆胞囊线虫的寄主范围广泛,主要寄主是大豆、绿豆等豆科植物以及玄参科的栽培地黄。这种线虫也具有较强的寄主专化特性。美国报告有16个生理小种,其中至少有5个即1、2、3、4、5号小种得到公认。中国查明有1、2、3、4、5号以及7号小种,其中以1、3、4号小种分布最广、为害严重。大豆胞囊线虫的生育适温在28~31℃,在中国大豆主产区每代历期约3~4个星期,每年可以发生3~4代不等。在土壤中的胞囊抗逆性强,贮于其内的卵可以存活多年,是寄主发病的主要侵染来源。沙土和连作有利于病原繁殖和在土中积累。

马铃薯胞囊线虫

G.rostochiensis(Wollen-weber)Behrens;G.pallida(Stone)Behrens包括马铃薯金线虫和马铃薯白线虫两种,为中国颁布的进境植物检疫对象,广泛分布欧美各国和亚洲少数国家。在中欧和西欧各国,两种胞囊线虫并存,但在其它地区,不同国家分布的虫种有的也是两种,有的则仅有其中的一种。这两种线虫对寄主的侵害相似,都能引起马铃薯严重减产。受害株地上部生长瘦弱矮小,叶片黄化,重病的早枯;病根发育受阻,块茎小,后期病根上出现的白—褐色小点(马铃薯白线虫)或白—金黄—褐色小点(马铃薯金线虫)为病原,雌虫和胞囊。它们还可与大丽花轮枝孢复合侵染马铃薯,造成更大的危害。

马铃薯胞囊线虫仅为害茄科植物,并且有高度专化的寄生性。在90多种茄科寄主中,重要的农业寄主是马铃薯以及茄和番茄。欧洲报道马铃薯金线虫有R01~R05五个生理小种,马铃薯白线虫有pa1~pa3三个生理小种。这两种胞囊线虫的生育适温约在15~20℃,但马铃薯白线虫适应偏高温度的能力不及马铃薯金线虫。在一个生长季节二者基本上都仅发生1代。掉落在土内的胞囊是主要侵染来源。在没有寄主时,每年约有三分之一的卵孵化,但胞囊内有的卵可以存活20年以上。马铃薯胞囊线虫的远距离传播主要借助污染胞囊的薯块的人为流动。

燕麦胞囊线虫

H.avenae Wollenweber

分布在西欧、北欧、地中海沿岸、北美、大洋洲、以及印度和日本,近年来,在中国北京、河北、河南、山西、湖北以及青海的局部地区也发现燕麦胞囊线虫。该虫对燕麦、小麦、大麦以及黑麦的为害最为严重。在澳大利亚可引起小麦减产达30%~70%。发病重的禾谷植株普遍矮缩,叶片黄化,分蘖减少,有效穗小,籽轻,根系小,在支根上簇生粗、短侧根。后期病根上出现的白色—褐色小点为雌虫和胞囊。

燕麦胞囊线虫为害禾本科植物,包括禾谷、禾本科牧草和杂草60~70种,约有20个不同致病型。在合适条件下,各地的群体每年都仅发生1代,生活周期约需3~4个月。低温(2~10℃)多雨适宜于卵的孵化,干燥对寄主体内的虫体发育有利。掉落在土壤中的胞囊是主要侵染来源。胞囊内的卵可存活数年,特别在寒冷、干旱区。在澳大利亚南方小麦区,胞囊常随尘暴作远距离传播。

甜菜胞囊线虫

H.schachtii Schmidt

它是发现最早的胞囊线虫,为胞囊线虫属的代表种,分布在欧洲、美洲、非洲、中东和大洋洲的广大地区,但主要在温带发生。中国仅在福建和北京个别地块的菠菜上发现甜菜胞囊线虫。这种线虫主要威胁甜菜生产,在北美和波兰也能严重为害芸苔属如甘蓝。甜菜幼苗到成株期均可发病,以幼苗受害最重,植株发病后侧根生长停止或死亡,贮藏根严重分叉,须根剧增,并在其上出现白一褐色小点,即病原雌虫和胞囊,病株地上部矮缩黄化,在炎热干燥条件下常萎蔫枯死。甜菜胞囊线虫还可分别与甜菜生www.rixia.cc尾胞和立枯丝核菌相互作用产生复合病,加重对甜菜的为害。

甜菜胞囊线虫的寄主范围广泛,包括许多科的植物。但以藜科和十字花科植物为其主要寄生对象。这种线虫的胞囊在土壤中可存活多年,为侵染的重要来源。卵的孵化适温为25℃,在寄主体内虫体的发育适温为21~27℃。在美国加州每年发生3~5代。

参考书目

Lamberti,F.et C.E.Taylor,(eds.),Cyst Nematodes,Plenum Press,New York and London,1986.

为何将植物线虫列为植物病原物

这是植物保护书上的一个问题,我上课没听,所以问下大家。知道的回答下,谢谢了。
主要是线虫与其他病虫原的为害不同,与真菌、细菌等病害表现相同,一般虫害都是病虫取食植物枝体(如叶片、枝条、根茎部),取食的是植物器官,而线虫为害是进入组织内或细胞内。
这里说要说一大篇,书上是很清楚的。建议你认真看一下书,一定会明白的!

文章标签:

本文标题: 植物病原线虫的定义
本文地址: http://www.rixia.cc/wenda/119290.html

上一篇:叶子颜色为什么不同

下一篇:为什么要鼓励孩子做家务

相关推荐

推荐阅读

猜你喜欢

返回顶部