人工智能应该怎么学?
人工智能需要什么基础?
当下,人工智能成了新时代的必修课,其重要性已无需赘述,但作为一个跨学科产物,它包含的内容浩如烟海,各种复杂的模型和算法更是让人望而生畏。对于大多数的新手来说,如何入手人工智能其实都是一头雾水,比如到底需要哪些数学基础、是否要有工程经验、对于深度学习框架应该关注什么等等。
那么,学习人工智能该从哪里开始呢?人工智能的学习路径又是怎样的?
本文节选自王天一教授在极客时间 App 开设的“人工智能基础课”,已获授权。更多相关文章,请下载极客时间 App,订阅专栏获取。
数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。今天的种种人工智能技术归根到底都建立在数学模型之上,要了解人工智能,首先要掌握必备的数学基础知识,具体来说包括:
线性代数:如何将研究对象形式化?
概率论:如何描述统计规律?
数理统计:如何以小见大?
最优化理论: 如何找到最优解?
信息论:如何定量度量不确定性?
形式逻辑:如何实现抽象推理?
线性代数:如何将研究对象形式化?
事实上,线性代数不仅仅是人工智能的基础,更是现代数学和以现代数学作为主要分析方法的众多学科的基础。从量子力学到图像处理都离不开向量和矩阵的使用。而在向量和矩阵背后,线性代数的核心意义在于提供了⼀种看待世界的抽象视角:万事万物都可以被抽象成某些特征的组合,并在由预置规则定义的框架之下以静态和动态的方式加以观察。
着重于抽象概念的解释而非具体的数学公式来看,线性代数要点如下:线性代数的本质在于将具体事物抽象为数学对象,并描述其静态和动态的特性;向量的实质是 n 维线性空间中的静止点;线性变换描述了向量或者作为参考系的坐标系的变化,可以用矩阵表示;矩阵的特征值和特征向量描述了变化的速度与方向。
总之,线性代数之于人工智能如同加法之于高等数学,是一个基础的工具集。
概率论:如何描述统计规律?
除了线性代数之外,概率论也是人工智能研究中必备的数学基础。随着连接主义学派的兴起,概率统计已经取代了数理逻辑,成为人工智能研究的主流工具。在数据爆炸式增长和计算力指数化增强的今天,概率论已经在机器学习中扮演了核心角色。
同线性代数一样,概率论也代表了一种看待世界的方式,其关注的焦点是无处不在的可能性。频率学派认为先验分布是固定的,模型参数要靠最大似然估计计算;贝叶斯学派认为先验分布是随机的,模型参数要靠后验概率最大化计算;正态分布是最重要的一种随机变量的分布。
数理统计:如何以小见大?
在人工智能的研究中,数理统计同样不可或缺。基础的统计理论有助于对机器学习的算法和数据挖掘的结果做出解释,只有做出合理的解读,数据的价值才能够体现。数理统计根据观察或实验得到的数据来研究随机现象,并对研究对象的客观规律做出合理的估计和判断。
虽然数理统计以概率论为理论基础,但两者之间存在方法上的本质区别。概率论作用的前提是随机变量的分布已知,根据已知的分布来分析随机变量的特征与规律;数理统计的研究对象则是未知分布的随机变量,研究方法是对随机变量进行独立重复的观察,根据得到的观察结果对原始分布做出推断。
用一句不严谨但直观的话讲:数理统计可以看成是逆向的概率论。 数理统计的任务是根据可观察的样本反过来推断总体的性质;推断的工具是统计量,统计量是样本的函数,是个随机变量;参数估计通过随机抽取的样本来估计总体分布的未知参数,包括点估计和区间估计;假设检验通过随机抽取的样本来接受或拒绝关于总体的某个判断,常用于估计机器学习模型的泛化错误率。
最优化理论: 如何找到最优解?
本质上讲,人工智能的目标就是最优化:在复杂环境与多体交互中做出最优决策。几乎所有的人工智能问题最后都会归结为一个优化问题的求解,因而最优化理论同样是人工智能必备的基础知识。最优化理论研究的问题是判定给定目标函数的最大值(最小值)是否存在,并找到令目标函数取到最大值 (最小值) 的数值。 如果把给定的目标函数看成一座山脉,最优化的过程就是判断顶峰的位置并找到到达顶峰路径的过程。
通常情况下,最优化问题是在无约束情况下求解给定目标函数的最小值;在线性搜索中,确定寻找最小值时的搜索方向需要使用目标函数的一阶导数和二阶导数;置信域算法的思想是先确定搜索步长,再确定搜索方向;以人工神经网络为代表的启发式算法是另外一类重要的优化方法。
信息论:如何定量度量不确定性?
近年来的科学研究不断证实,不确定性就是客观世界的本质属性。换句话说,上帝还真就掷骰子。不确定性的世界只能使用概率模型来描述,这促成了信息论的诞生。
信息论使用“信息熵”的概念,对单个信源的信息量和通信中传递信息的数量与效率等问题做出了解释,并在世界的不确定性和信息的可测量性之间搭建起一座桥梁。
总之,信息论处理的是客观世界中的不确定性;条件熵和信息增益是分类问题中的重要参数;KL 散度用于描述两个不同概率分布之间的差异;最大熵原理是分类问题汇总的常用准则。
形式逻辑:如何实现抽象推理?
1956 年召开的达特茅斯会议宣告了人工智能的诞生。在人工智能的襁褓期,各位奠基者们,包括约翰麦卡锡、赫伯特西蒙、马文闵斯基等未来的图灵奖得主,他们的愿景是让“具备抽象思考能力的程序解释合成的物质如何能够拥有人类的心智。”通俗地说,理想的人工智能应该具有抽象意义上的学习、推理与归纳能力,其通用性将远远强于解决国际象棋或是围棋等具体问题的算法。
如果将认知过程定义为对符号的逻辑运算,人工智能的基础就是形式逻辑;谓词逻辑是知识表示的主要方法;基于谓词逻辑系统可以实现具有自动推理能力的人工智能;不完备性定理向“认知的本质是计算”这一人工智能的基本理念提出挑战。
《人工智能基础课》全年目录
本专栏将围绕机器学习与神经网络等核心概念展开,并结合当下火热的深度学习技术,勾勒出人工智能发展的基本轮廓与主要路径。点击我获取学习资源
我们再来看看人工智能,机器学习、大数据技术应用方面有哪些联系与区别
大数据、人工智能是目前大家谈论比较多的话题,它们的应用也越来越广泛、与我们的生活关系也越来越密切,影响也越来越深远,其中很多已进入寻常百姓家,如无人机、网约车、自动导航、智能家电、电商推荐、人机对话机器人等等。
大数据是人工智能的基础,而使大数据转变为知识或生产力,离不开机器学习(Machine Learning),可以说机器学习是人工智能的核心,是使机器具有类似人的智能的根本途径。
本文主要介绍机器有关概念、与大数据、人工智能间的关系、机器学习常用架构及算法等,具体如下:
机器学习的定义
大数据与机器学习
机器学习与人工智能及深度学习
机器学习的基本任务
如何选择合适算法
Spark在机器学习方面的优势
01 机器学习的定义
机器学习是什么TOcofbKu?是否有统一或标准定义?目前好像没有,即使在机器学习的专业人士,也好像没有一个被广泛认可的定义。在维基百科上对机器学习有以下几种定义:
“机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能”。
“机器学习是对能通过经验自动改进的计算机算法的研究”。
“机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。”
一种经常引用的英文定义是:A computer program is said to learn from experience (E) with respect to some class of tasks(T) and performance(P) measure , if its performance at tasks in T, as measured by P, improves with experience E。
可以看出机器学习强调三个关键词:算法、经验、性能,其处理过程如图所示。
▲机器学习处理流程
上图表明机器学习是使数据通过算法构建出模型,然后对模型性能进行评估,评估后的指标,如果达到要求就用这个模型测试新数据,如果达不到要求就要调整算法重新建立模型,再次进行评估,如此循环往复,最终获得满意结果。
02 大数据与机器学习
我们已进入大数据时代,产生数据的能力空前高涨,如互联网、移动网、物联网、成千上万的传感器、穿戴设备、GPS等等,存储数据、处理数据等能力也得到了几何级数的提升,如Hadoop、Spark技术为我们存储、处理大数据提供有效方法。
数据就是信息、就是依据,其背后隐含了大量不易被我们感官识别的信息、知识、规律等等,如何揭示这些信息、规则、趋势,正成为当下给企业带来高回报的热点。
而机器学习的任务,就是要在基于大数据量的基础上,发掘其中蕴含并且有用的信息。其处理的数据越多,机器学习就越能体现出优势,以前很多用机器学习解决不了或处理不好的问题,通过提供大数据得到很好解决或性能的大幅提升,如语言识别、图像设别、天气预测等等。
03 机器学习、人工智能及深度学习
人工智能和机器学习这两个科技术语如今已经广为流传,已成为当下的热词,然而,他们间有何区别?又有哪些相同或相似的地方?虽然人工智能和机器学习高度相关,但却并不尽相同。
人工智能是计算机科学的一个分支,目的是开发一种拥有智能行为的机器,目前很多大公司都在努力开发这种机器学习技术。他们都在努力让电脑学会人类的行为模式,以http://www.rixia.cc便推动很多人眼中的下一场技术革命——让机器像人类一样“思考”。
过去10年,机器学习已经为我们带来了无人驾驶汽车、实用的语音识别、有效的网络搜索等等。接下来人工智能将如何改变我们的生活?在哪些领域最先发力?我们拭目以待。
对很多机器学习来说,特征提取不是一件简单的事情。在一些复杂问题上,要想通过人工的方式设计有效的特征集合,往往要花费很多的时间和精力。
深度学习解决的核心问题之一就是自动地将简单的特征组合成更加复杂的特征,并利用这些组合特征解决问题。深度学习是机器学习的一个分支,它除了可以学习特征和任务之间的关联以外,还能自动从简单特征中提取更加复杂的特征。下图展示了深度学习和传统机器学习在流程上的差异。如图所示,深度学习算法可以从数据中学习更加复杂的特征表达,使得最后一步权重学习变得更加简单且有效。
▲机器学习与深度学习流程对比
前面我们分别介绍了机器学习、人工智能及深度学习,它们间的关系如何?
▲人工智能、机器学习与深度学习间的关系
人工智能、机器学习和深度学习是非常相关的几个领域。上图说明了它们之间大致关系。人工智能是一类非常广泛的问题,机器学习是解决这类问题的一个重要手段,深度学习则是机器学习的一个分支。在很多人工智能问题上,深度学习的方法突破了传统机器学习方法的瓶颈,推动了人工智能领域的快速发展。
04 机器学习的基本任务
机器学习基于数据,并以此获取新知识、新技能。它的任务有很多,分类是其基本任务之一。分类就是将新数据划分到合适的类别中,一般用于类别型的目标特征,如果目标特征为连续型,则往往采用回归方法。回归是对新目标特征进行预测,是机器学习中使用非常广泛的方法之一。
分类和回归,都是先根据标签值或目标值建立模型或规则,然后利用这些带有目标值的数据形成的模型或规则,对新数据进行识别或预测。这两种方法都属于监督学习。与监督学习相对是无监督学习,无监督学习不指定目标值或预先无法知道目标值,它可以将把相似或相近的数据划分到相同的组里,聚类就是解决这一类问题的方法之一。
点击我获取学习资源
除了监督学习、无监督学习这两种最常见的方法外,还有半监督学习、强化学习等方法,这里我们就不展开了,下图展示了这些基本任务间的关系。
▲机器学习基本任务的关系
05 如何选择合适算法
当我们接到一个数据分析或挖掘的任务或需求时,如果希望用机器学习来处理,首要任务是根据任务或需求选择合适算法,选择哪种算法较合适?分析的一般步骤为:
▲选择算法的一般步骤
充分了解数据及其特性,有助于我们更有效地选择机器学习算法。采用以上步骤在一定程度上可以缩小算法的选择范围,使我们少走些弯路,但在具体选择哪种算法方面,一般并不存在最好的算法或者可以给出最好结果的算法,在实际做项目的过程中,这个过程往往需要多次尝试,有时还要尝试不同算法。不过先用一种简单熟悉的方法,然后,在这个基础上不断优化,时常能收获意想不到的效果。
人工智能是当下很火的显学,英文缩写为AI。被认为是二十一世纪三大尖端技术之一,其他两个技术是基因工程和纳米科学,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它的目的是了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,时下热炒的大数据和阿尔法GO大战李世石,其背后都有人工智能的影子。
学习人工智能,主要掌握:概率论、数理统计、矩阵论、图论、随机过程、最优化、神经网络、贝叶斯理论、支持向量机、粗糙集、经典逻辑、非经典逻辑、认知心理学,同时也要学习高等数学微积分、线性代数,另外编程工具,例如:matlab,spss,C++或Java也必不可少。
人工智能怎样学习?
人工智能(artificial intelligence),英文缩写为ai它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。现在随着时代的发展,ai的应用也越来越广泛了,那么今天青藤小编就为大家介绍一下该怎么入门人工智能。人工智能虽然经过了60多年的发展,期间也有众多著名科学家的参与,但是目前人工智能领域的发展依然处在初级阶段,整个人工智能领域还有大量的课题需要攻关,所以目前人工智能领域更关注中高端人才。
要想系统的学习人工智能一方面需要具备扎实的基础知识,另一方面还需要通过具体的岗位实践(课题研发)来完成,因为目前人工智能领域的很多方向还依然有待完善,所以对于初学者来说选择一个方向并完成入门学习是比较现实的选择。
人工智能的入门学习需要具备以下知识结构:
一、编程语言
编程语言是学习人工智能的基础内容之一,掌握了编程语言才能完成一系列具体的实验。推荐学习python语言,一方面原因是python语言简单易学,实验环境也易于搭建,另一方面原因是python语言有丰富的库支持。目前python语言在人工智能领域有广泛的应用,包括机器学习、自然语言处理和计算机视觉等方向。
二、算法设计基础
目前人工智能的研究内容集中在六个大的方向上,分别是自然语言处理、知识表示、自动推理、机器学习、计算机视觉和机器人学,这些内容都有一个重要的基础就是算法设计,可以说算法设计是研究人工智能的关键所在。学习算法设计可以从基础算法开始,包括递归、概率分析和随机算法、堆排序、快速排序、线性时间排序、二叉树搜索、图算法等内容。
三、人工智能基础
人工智能基础内容的学习是打开人工智能大门的钥匙,人工智能基础内容包括人工智能发展史、智能体、问题求解、推理与规划、不确定知识与推理、机器学习、感知与行动等几个大的组成部分。
在完成以上内容的学习之后,最好能参加一个人工智能的项目组(课题组),在具体的实践中完成进一步的学习过程。
随着大数据的发展,人工智能也进入了一个全新的发展时代,对于基础薄弱的初学者来说,通过大数据进入人工智能领域也是一个不错的选择。
人工智能学习最佳途径:
1、寻找一些免费的书籍
寻找一些免费的ai书籍作为自己学习人工智能的开始,是正确的做法。peter norvig和stuart j. russell所著的《artificial intelligence: a modern approach》一书就很不错。本书不仅介绍了基本的人工智能概念和算法(专家系统、深度优先和广度优先搜索、知识表示等),而且还包括基础知识如贝叶斯推理,一阶逻辑,语言建模等。
对于那些对深度学习感兴趣的人, ian goodfellow、yoshua bengio和aaron courville 所写的《深度学习》(自适应计算和机器学习系列)一书是不错的选择。此外,可以看看《logic for computer science》这本免费书,它解释了计算机科学的数学逻辑,并强调了求解证明的算法方法。
2、熟悉python,数学知识
第一步:你需要掌握一门人工智能领域常用的编程语言,python或者r语言都可以,掌握其中一种即可;我个人推荐你学习python语言,因为python很火,功能强大。在这里你只需要花一周的时间把python基础掌握牢固即可,如怎么样定义变量、怎么样操作元组、怎么样自定义函数等;
第二步:你需要补习数学知识,你是零基础的话,就先将高等数学基础知识学透,从基础的数据分析、线性代数及矩阵等等入门,只有基础有了,才会层层积累,不能没有逻辑性的看一块学一块。也有人有疑惑,为什么人工智能需要数学相关的知识呢?因为数学知识一直贯穿在人工智能深度学习各个模型当中,理解公式的原理和应用,以及公式的推导过程,帮助各种神经网络的参数调整,才能灵活运用创造新的算法模型。
3、机器学习
有关机器学习领域的最佳介绍,请观看coursera的andrew ng机器学习课程。它解释了基本概念,并让你很好地理解最重要的算法。
(1)有关ml算法的简要概述,查看这个tutsplus课程“machine learning distilled”。
(2)“programming collective intelligence”这本书是一个很好的资源,可以学习ml 算法在python中的实际实现。 它需要你通过许多实践项目,涵盖所有必要的基础。
这些不错的资源你可能也感兴趣:
(1)perer norvig 的udacity course on ml(ml udacity 课程)
(2)tom mitchell 在卡梅隆大学教授的 another course on ml(另一门ml课程)
(3)youtube上的机器学习教程 mathematicalmonk
4、计算机科学
要掌握ai,你要熟悉计算机科学和编程。
如果你刚刚开始,我建议阅读 dive into python 3 (深入python 3)这本书,你在python编程中所需要的大部分知识都会提到。
要更深入地了解计算机编程的本质 - 看这个经典的 mit course (mit课程)。这是一门关于lisp和计算机科学的基础的课程,基于 cs -结构和计算机程序的解释中最有影响力的书之一。
如何学习人工智能?可以自学吗?
当然可以自学。人工智能作为新时代科学飞速发展的产物之一,他的出现极大的便利了人们的生活,提高了人们对生活的体验。作为新兴的产业之一,会有很多小伙伴对其产生浓厚的兴趣,那么今天就让我们来讲讲如何学习人工智能,顺便分享几个学习人工智能的网站以供大家参考。
首先,人工智能属于计算机的一个分支,他是科技发展的重要产物,同样也是科技强大的体现。如果决定想要学习人工智能,当然不论是学任何东西。第一步就是要先了解你所要学习的具体是什么东西。就拿人工智能来举例,我们要先了解这一领域以及一些相关的基础知识。
一、人工智能是什么?
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。当我们在了解了基础的知识后我们还要对其进行下一步定义,就是我们为什么要去学习这项专业也就是我们要拿他去干什么?也就是明确目的性。
你的目的是什么?是想要做基础的学术研究、比较感兴趣简单的进行了解还是说当成一个具体的就业方向,然后想明白这个问题我们再去根据他来进行有重点地去学习这项专业。像人工智能他的方向可能会有很多例如:机器翻译,智能控制,专家系统,机器人学,语言和图像理解,遗传编程机器人工厂,自动程序设计,航天应用,庞大的信息处理,储存与管理,执行化合生命体无法执行的或复杂或规模庞大的任务等等。
选择相关的带着目的地去进行学习,这样是最有效率的。
好了,接下来由我来分享几个有关学习人工智能的网站
网站一:美国人工智能协会(网址: http://www.aaai.org/ )
作为美国一个非盈利性的科学社团组织,主要致力于让机器产生智慧思考和智能行为的研究。此外,提升公众对人工智能的理解,对人工智能实践人员的教学和培训,为人工智能领域的研究者和投资者提供指导等也都是AAAI的实践内容。
网站二:智能代理家园(Agentland 网址: http://www.agentland.com/ )
智能代理是人工智能的应用领域之一,在中学人工智能课程教学中,适当介绍智能代理的基本概念和工作原理,并让学生与智能代理实例进行交互操作,能使其不但感受到智能代理的智慧和人性化服务,并且将由对智能代理的亲身体验,而产生对人工智能课程学习的浓厚兴趣。PS:可以当作入门学习的基础。
好了以上就是对人工智能的基本了解与自学方法,感兴趣的小伙伴可以去学习一下。
学习人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
人工智能门槛比较高,需要积累,如果你有这方面的天赋,可以去尝试。
人工智能专业的学习步骤?
人工智能
就业方向:科学研究,工程开发。计算机方向。软件工程。应用数学。电气自动化。通信。机械制造
人工智能可以说是一门高尖端学科,属于社会科学和自然科学的交叉,涉及了数学、心理学、神经生理学、信息论、计算机科学、哲学和认知科学、不定性论以及控制论。研究范畴包括自然语言处理、机器学习、神经网络、模式识别、智能搜索等。应用领域包括机器翻译、语言和图像理解、自动程序设计、专家系统等。
“Python是一个不错的选择”,它扮演着科学计算和数据分析的重要角色(拥有如Numpy和SciPy这样的库),同时针对不同的算法,有丰富的库支撑。2、学习代数、微积分、概率统计学的基础知识如果你想了解机器学习更深层次的东西,学习这些知识是必不可少的,且会让你获益匪浅。同时我们可以利用Python科学数据库如Numpy&SciPy的优势。在学习不同的算法时,你需要将数据可视化,并学会利用在算法中用到的代数、微积分等概念属性。3、学习Python库机器学习库中已经写好了无数个Python库。你就挨个学习吧。在Python中,可以先从SciPy, PyBrain, Matplotlib 和Numpy开始学习,这些对你写机器学习算法都将十分有用。其实,这也是学习人工智能的第一步。4、Andrew-Ng课程强烈推荐Andrew-NG的免费课程,了解机器学习的概念及算法理论。学习完他的课程以后,你对人工智能现象就会有一些了解了。5、学习Scikit-Learn库最强大的API之一,拥有各种算法功能强大的数据编码器(Algorithms Powerful Data Encoders)强烈推荐你看看这本书——Python Machine Learning Edition 2,中文名《Python 机器学习》第2版,作者Sebastian Raschka。
“我刚开始学习人工智能时就读了这本书。读完本书,你就会了解如何实现机器学习中的各种算法”。从机器学习算法理论(数学解释)和优化方法到实战编码,本书涵盖了Python实战算法和Scikit-Learn API在Python中的应用等知识。6、实战时间你也应该积极参加网络上各种编程竞赛。这类竞赛一般都很耗时,但不管怎样,你在刚开始的时候没必要一定要取得一个很高的排名,因为参加比赛的人都很优秀。刚开始,在他们面前你可能只是个无名小卒,但也别灰心,你只要每天持续练习,向每个人学习就好了。
如何学习人工智能?可以自学吗?
随着社会的发展,人工智能是未来大势所趋。我们也应该与时俱进不断地更新自己的知识。那我们该如何学习人工智能呢?因为人工智能在社会上并没有所谓的课程,我们可以向学习知识一样来自学人工智能。
机器学习所谓的人工智能就是机器代替人类来做事情,比如说以前做蛋糕是人工打鸡蛋打发蛋白,耗时长和人力成本高,而现在我们只需要一个机器就可以代替我们做所有的事情,成本低,而且花费时间就短生产效率大大就提高了。这就需要,我们去学习如何操作机器去了解机器的每一个零件代表什么意思,看懂说明知道如何去控制机器。
深度学习人工智能的出现,其实也是人类生产制造它的结果,而如何去生产制造他来达到我们想要的目的,这样就让我们去深度学习关于这个人工智能机器的知识,广泛应用知识来面对人工智能。因为人工智能是一个前所未有的东西,待开发的区域也还有很多,所以我们只能通过不断地学习来提高自己,从而提高我们的人工智能,这是一环扣一款环的缺一不可。
数据处理人工智能的背后,其实是一堆数据。而不同的处理方式,会导致这些数据会有出入,我们要想具体达到人工智能去做某一种,目的就要对应的去做数据处理。而数据处理并不像我们打扫卫生扫地如此简单。他需要经过算术反复的试验来得出最终的数据,所以数据处理是非常严谨的,这也是我们学习人工智能的必要之一。
人工智能的学习建议从简单的开始,因为如果从最难的部分开始的话,这是一个我们未涉及过的领域。我们会有可能觉得非常的气馁甚至去放弃,所以就好像我们从一年级一直到我们大学逐步渐进。在过程中不断制定小目标,让自己慢慢地自学成才,慢慢地学懂人工智能。
文章标签:
上一篇:你们说的太阳花和向日葵有区别么?
下一篇:藤萝爬上葡萄架,纠缠不清打一生肖