日夏养花网

您好,欢迎访问日夏养花网,我们的网址是:http://www.rixia.cc

人工智能智能专业怎么样?

2022-07-28 17:39:32 分类:养花问答 来源: 日夏养花网 作者: 网络整理 阅读:73

人工智能专业好不好

人工智能专业是一个很不错的专业,前景很好,中国正在产业升级,工业机器人和人工智能方面会是强烈的热点,以后很多东西都是人工智能了。我是桂林电子科技大学18级学生,我有一个认识的学弟就是人工智能专业的,我们学校是2020年才有人工智能这个专业的,下面我来具体介绍一下这个专业吧。

01——个人感受

我认为人工智能是未来的重要趋势之一。随着互联网的发展,大数据、云计算和物联网等相关技术会陆续普及应用,在这个大背景下,智能化必然是发展趋势之一。人工智能相关技术将首先在互联网行业开始应用,然后陆续普及到其他行业。所以,从大的发展前景来看,人工智能这个专业前景非常广阔,所以说这个专业是很好的选择。

还有,我觉得这个专业适合所有对人工智能有兴趣的同学去选择,该专业的课程难度不是很高,不过也不能随便摆烂,也得认真去学。

说到学习这个专业的首选那肯定是清华大学,其次是北京大学、国防科技大学、浙江大学和哈尔滨工业大学等。如果你真的对人工智能有着浓厚的兴趣,那么选择这个专业不会有错的。

02——专业介绍

人工智能是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学,也是计算机科学的一个分支。它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。

03——主修课程

人工智能专业的核心课程有:专业导论、人工智能数学基础、线性代数 A、概率论与数理统计、程序设计与问题求解、电路与电子技术基础、面向对象编程、算法及数据结构、人工智能基础、数据科学导论、计算机组成原理、机器学习、信息论、机器人学概论、数字信号处理、模式识别、自然语言处理、现代控制理论等。

我们在学习中需要注意的是:要认真学习智能的基础理论、基本方法和基本技能,掌握相关应用领域基础知识。还需要具有系统的计算思维和数据思维,具有创新创业意识和国际视野,具有良好的社会人文素养、职业道德和团队精神。

04——就业前景

人工智能专业就业方向主要包括科研机构(机器人研究所等)、软硬件开发人员、高校讲师等。在国内的话就业前景是比较好的,国内产业升级,IT行业的转型工业和机器人和智能机器人以及可穿戴设备的研发将来都是强烈的热点。人工智能目前是一个快速增长的领域,人才需求量大,相比于其他技术岗位,竞争度偏低,薪资相对较高,因此,趁着这个机遇,人工智能专业是一个很好的选择。

05——小结

人工智能专业相当的不错,未来必定是一个人工智能的世界,掌握了人工智能技术,就是一笔不可描述的财富。人工智能不仅能带动国家的发展,还能够方便世界上所有的人,所以,相信自己的感觉,对人工智能感兴趣的同学,来选择这个专业肯定没错的。

人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。

一、机器学习
机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。
根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。
根据学习方法可以将机器学习分为传统机器学习和深度学习。

二、知识图谱
知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。
知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。

三、自然语言处理
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。
机器翻译
机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。
语义理解
语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。
问答系统
问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。
自然语言处理面临四大挑战:
一是在词法、句法、语义、语用和语音等不同层面存在不确定性;
二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;
三是数据资源的不充分使其难以覆盖复杂的语言现象;
四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算

四、人机交互
人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。

五、计算机视觉
计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。
目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:
一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;
二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;
三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。

六、生物特征识别
生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。
识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征www.rixia.cc识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。
生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。

七、VR/AR
虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。
虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。
目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势
工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能(ArtificvYeXXNmSyial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。
优点:
1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。
2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。
3、人工智能可以提高人类认识世界、适应世界的能力。
缺点:
1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。
2、人工智能如果不能合理利用,可能被坏人利用在犯罪上,那么人类将会陷入恐慌。
3、如果我们无法很好控制和利用人工智能,我们反而会被人工智能所控制与利用,那么人类将走向灭亡,世界也将变得慌乱。
近年来,我国在人工智能领域密集出台相关政策,更在2017、2018以及2019年连续三年的政府工作报告中提到人工智能,可以看出在世界主要大国纷纷在人工智能领域出台国家战略,抢占人工智能时代制高点的环境下,中国政府把人工智能上升到国家战略的决心。截至2018年11月,全国已有15个省市发布人工智能规划,其中12个制定了具体的产业规模发展目标。通过一系列政策与资金扶持,各省市不断强化当地人工智能的技术研发与应用,为人工智能产业提供了广阔发展前景。人工智能概念的火热促进了不少行业的兴起,比如域名,许多相关的.top域名已经被注册。
当前,我国人工智能产业发展的基础条件已经具备,未来十年内都将是人工智能技术加速普及的爆发期。人工智能专用芯片有望成为下一个爆发点,智能语音产业链逐渐成形,产业规模大幅提升。同时,人工智能具有显著的溢出效应,将带动其他相关技术的持续进步,助推传统产业转型升级和战略性新兴产业整体性突破。

人工智能的前景怎么样?

就业前景还是不错的,近两年,人工智能方面一直都是热点。人工智能专业作为近几年兴起的工科专业之一,虽然发展时间不久,但是绝对极具竞争力,无论是对以后就业还是科研研究,人工智能专业所能从事的行业都是有广泛代表性的。不过这个专业难度大,要求有创新的思维能力,高数必须学得非常好,需要掌握软件编程、微电子等,要有一定的机械设计能力、空间思维能力。只有深入钻研,才能成为领域的佼佼者。
人工智能行业发展现状

1、人工智能市场规模扩大

近年来,中国人工智能市场规模逐年攀升。2017年中国人工智能市场规模708.5亿元,2020年增至1606.9亿元。

中国是全球最大的人工智能应用市场,人工智能技术落地迅速,已广泛应用于多个行业和场景,应用市场潜力巨大,未来将在现有行业更加深入应用并触达更多行业场景。预计2021年中国人工智能市场规模将突破2000亿元。

资料来源:中商产业研究院整理

2、人工智能企业注册量增加

近两三年来,人工智能相关企业注册量飞速上升。企查查数据显示,2017年人工智能上升为国家战略后,相关企业年注册量首次突破1万家,2019年注册量已达到4.26万家。2020年,人工智能新科技的链接价值、赋能价值表现得更为突出,全年注册量增至17.10万家。

数据来源:企查查、中商产业研究院整理

3、人工智能领域投资活跃

随着我国对人工智能的日益关注,带动着投资行业也开始关注这一热门。2016年以来,我国人工智能投融资活跃。2020年投融资事件663起,投融资金额1415.21亿元,近三年投融资金额均超1000亿元,投融资事件呈现下降的趋势,由此看来,人工智能投融资更加理性,资金流向头部项目的趋势明显。

数据来源:IT桔子、中商产业研究院整理

三、人工智能行业发展前景

1、十四五规划加速人工智能产业发展

随着互联网、大数据、云计算和物联网等技术不断发展,人工智能正引发可产生链式反应的科学突破、催生一批颠覆性技术,加速培育经济发展新动能、塑造新型产业体系,引领新一轮科技革命和产业变革。我国正处日夏养花网于全面建成小康社会的决胜阶段,人民对美好生活的需要和经济高质量发展的要求,为我国人工智能发展和应用带来广阔前景。

为推动人工智能产业发展,我国先后发布了《国务院关于印发新一代人工智能发展规划的通知》《促进新一代人工智能产业发展三年行动计划(2018-2020年)》《关于促进人工智能和实体经济深度融合的指导意见》等政策,这些文件中均提出了人工智能技术标准、产业规划、安全和伦理等方面的要求,明确指出要把握新一代人工智能发展特点,促进人工智能和实体经济深度融合。

此外,中国十四五规划纲要多次提及人工智能产业,要求培育壮大人工智能、大数据、区块链、云计算、网络安全等新兴数字产业,提升通信设备、核心电子元器件、关键软件等产业水平。人工智能推动制造业转型升级,同时是数字经济高质量发展的重要动力。十四五规划纲要提出加快建设数字经济,加快推动数字产业化,推动制造业优化升级,这些将利好人工智能产业发展。

人工智能行业主要上市公司:目前国内人工智能行业的上市公司主要有百度百度(BAIDU)、腾讯(TCTZF)、阿里巴巴(BABA)、科大讯飞(002230)等。

本文核心数据:计算机视觉市场占比,计算机视觉核心产品及相关产业规模,机器人视觉获投企业业务赛道情况,中国计算机视觉落地赛道特征,中国计算机视觉核心产品及带动相关产业规模预测

1、 计算机视觉市场占比达到57%

得益于深度学习算法的成熟应用,侧重于感知智能的图像分类技术在工业界逐步实现商用价值,助力金融、安防、互联网交通、医疗、工业、政务等领域智能升级。2020年我国计算机视觉产品的市场规模占整个人工智能行业的57%。

从规模来看,我国计算机视觉在2020年核心产品的市场规模将达到862.1亿元,与此同时,和计算机视觉有关的计算机通信设备销售、医疗器械等专用设备销售、工程建设、传统业务效益转化等带动相关产业规模超过2200亿元。

2、安防、金融、医疗等赛道收到重视

在近年获投的146家计算机视觉创业公司中,热门赛道集中于零售、安防、制造、政务、医疗。零售业是国民经济第三大行业,利用计算机视觉,零售业可基于场景化营销、商品识别分析、消费者识别分析和无人商超等应用,为提升营销转化率、门店运营智能化改革提供途径;安昉是计算机视觉落地最早的场景之一,海量视频的有效利用存在巨大挑战,完全依靠人工费时费力,而安防影像智能分析则可有效缓解这一问题;制造业是国民经济的支柱,对计算机视觉的使用包括智慧现场安监、设备在线监测与运维、智能检测运维、智能辅助运输和工业视觉质检等方向,链条长且场景多样,也孕育了批新兴AI企业。

针对这些行业主要的赛道特征,可以分析出,针对公安、金融、矿山等主管部门释放了非常明确的利好信号或大额持续投资的行业,主要机遇在于将产品打磨到足够精准、鲁棒性足够强,以便进入髙门槛的准入供应池,同时通过解决高难度情形的硬实力卡位;针对医疗、能源和制造等这种极具战略意乂、发展空间极大,但是或陷入长审批周期、或限于审慎性难以快速释放需求的行业,主要机遇在于抢先打通产品进入行业生态圈的渠道和链条,以及谋划过政府、行业生态圈的核心集团企业等途径,积极参与公共服务平台建设,建立从上向下拓展的先发优势,抢先获得大量训练数据与场景理解。

3、未来发展赛道规模将达6千亿

一方面随着计算机视觉的进一步发展,技术的更新将促使产业规模进一步增长,另一方面,计算机视觉和产业融合的加深,也将扩大相关产业规模。预计到2025年我国技术及视觉核心产品及带动的相关产业规模将达到6000亿。其中计算机视觉核心产业复合增长率达到15.9%,计算机视觉带动相关产业的复合增长率达到22.5%。

以上数据参考前瞻产业研究院《中国人工智能行业市场前瞻与投资战略规划分析报告》

人工智能的前景非常好,他是未来发展的潮流之一,就像20年的计算机,软件工程一样,人工智能的未来一定是非常广阔的,有条件的话可以去进入人工智能方面的行业提前布局。
人工智能的前景非常的好,因为现在的话全世界都在做人工智能的业务。所以说现在人工智能是非常好的一个前景的工作。

人工智能以后的前景怎么样?


人工智能正在改变我们的生活,数字化被誉为第四次工业革命,物联网、大数据、云计算和人工智能是数字化的技术支撑,而人工智能是顶层工具,未来各行各业会像第二次工业革命用电一样使用人工智能的技术来改造我们的生产效率和生活质量!所以人工智能前景不可限量,现在还处于弱人工智能阶段,强人工智能和超强人工智能阶段还没有到来!

那如果毕业于大数据和人工智能专业就业前景如何呢?

数据科学与大数据技术与人工智能专业不仅有着明朗的就业前景,在就业岗位的薪资待遇上有着无法比拟的就业优势。基本薪酬,薪资水平、就业满意度都优于全国平均水平的专业。随着未来科技应用的逐步推进,人工智能以及大数据技术的岗位需求逐步上升,未来必定会发展为就业前景最好的专业之一。

然后我们看哪些行业急迫需要人工智能的人才呢?金融行业对于智能化人才可谓求贤若渴,金融科技发展如火如荼,各大银行都全力投入。

新零售新消费行业同样是一将难求,这个时代所有的传统行业都值得用数字化的方式来重新做一遍。

智能制造已经爆发性成长,制造业人才相对传统,所以智能制造人才缺口已经达到了70%,市场需求巨大!

相关内容请参考下面视频链接,希望对你有用:

人工智能以后的前景怎么样?加深对于人工智能理解,拥抱未来

你好,我就对人工智能以后的前景做一下展望。
1,增强人类的劳动技能

人们一直担心机器或机器人将取代人工,甚至可能使某些工种变得多余。但人们也将越来越多地发现,人类可借助机器来提升自身技能。

比如,营销部门已习惯使用工具来帮助确定哪些潜在客户更值得关注;在工程领域,人工智能工具通过提供维护预测,让人们提前知道机器何时需要维修;法律等知识型行业将越来越多地使用人工智能工具,帮助人们对不断增长的可用数据中进行分类,以找到完成特定任务所需的信息。

总而言之,在几乎每个职业领域,各种智能工具和服务正在涌现,以帮助人们更有效地完成工作。2022年人工智能与人们日常生活的联系将会变得更加紧密。
2更大更好的语言建模


语言建模允许机器以人类理解的语言与人类互动,甚至可将人类自然语言转化为可运行的程序及计算机代码。也就是说,你和机器人对话就和别人聊天一样,没有什么差距。
3自动驾驶交通工具。
以后人们出行不再需要打的,甚至不用考驾照。司机都可以机器人代替,可以通过数据对比,地图,选择最近的道路,绕开拥挤的道路。
总之未来的人工智能,更具有科幻色彩。让人们的生活过得更加的舒适。
工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。
优点:
1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。
2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。
3、人工智能可以提高人类认识世界、适应世界的能力。
缺点:
1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。
2、人工智能如果不能合理利用,可能被坏人利用在犯罪上,那么人类将会陷入恐慌。
3、如果我们无法很好控制和利用人工智能,我们反而会被人工智能所控制与利用,那么人类将走向灭亡,世界也将变得慌乱。
个人认为未来人工智能发展会非常的好,人工智能可以解决日常生活中许许多多的问题,不再人为的再次劳动,比如自动洗碗,自动造车,无人驾驶,无人快递,这些都是未来的趋势,同时也降低了企业的用人成本问题,给企业降低了负担,随着人工智能越来越普及,相信不久的将来人工智能会取代很多需要人的工作。
我个人感觉人工智能的未来不是不错的。像现在的刷脸支付指纹支付都是人工智能的一种。现在还出现了无人驾驶汽车,还有之前的无人驾驶飞机都是人工智能。人工智能会越来越方便,将来也会有更多人工智能的东西出现。所以人工智能,未来的发展前景是不错的。个人理解,仅供参考。

人工智能专业怎么样

我是河池学院一名大四毕业生,人工智能挺好玩的,在我们学校经常可以看见人工智能的同学的成果。让我真的是好羡慕。我有一个好朋友就是人工智能专业的,他说这个专业非常的有趣。经常给我发一些他们小组专业的成果,真的是一整个爱住了。

据我了解未来十年,急缺人才的五大行业,人工智能就排第二,目前随着新技术革命不断推进,全球人工智能人才紧缺,据了解目前我国人工智能人才缺口就达到500万,而从业者薪资大部分月薪超过2万元。未来随着我们国家国际地位不断提高,以及技术更新换代的,人工智能行业领域人才缺口将持续扩大!腾讯、阿里巴巴、拼多多、华为等知名企业均不惜重金求才。所以说明这个专业非常的缺人才,就业还是挺好就业的吼。

我的损友跟我讲,人工智能主要就业方向在于科研机构、高校讲师、互联网企业软硬件开发人员三个主要的方向。科研机构主要对人工智能技术进一步的探究,为真正的人工智能实现储备技术力量。高校讲师以及培训机构讲师主要是为人工智能的应用储备人才力量,为人工智能的普及应用提供强有力的人才支撑。相对于前面两个就业方向而言,互联网企业软硬件开发是目前人工智能学习者的主要就业方向。

请点击输入图片描述

 整体来看,目前人工智能在语音识别、图像识别等领域已经逐渐走向城市,但是距离真正的人工智能还有很长的距离。虽然机器学习作为人工智能的技术支撑已经普及到目前人工智能的学习之中,但是深度学习的进一步实现,还需要由不断涌入的人才进一步探索。

你的努力在未来一定不会辜负你的,作为学姐的我希望你是真的热爱这个专业所以才会选择报考这个专业,不然你大学四年过的可能会非常煎熬。

我一个朋友就是学人工智能的,附上录取通知书。每一次他都会和我们讲起这个专业,下面我来简绍一下。

1、专业简绍:

人工智能专业是一个偏向于理科类的专业,所以对于理科生来说具有较大的优势,文科生报考这个专业天生具有一定的劣势。首先,人工智能专业的科学性和专业性非常强,需要全面考察学生非常强的逻辑思维能力。

2、专业方向:

人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

3、就业方向参考

(1)医学图像处理:医疗设备、医疗器械很多都会涉及到图像处理和成像,大型的公司有西门子、GE、飞利浦等。

(2)计算机视觉和模式识别方向:前面说过的指纹识别、人脸识别、虹膜识别等;还有一个大的方向是车牌识别;目前鉴于视频监控是一个热点问题,做跟踪和识别也不错;

(3)还有一些图像处理方面的人才需求的公司,如威盛、松下、索尼、三星等。

人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。

一、机器学习
机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。
根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。
根据学习方法可以将机器学习分为传统机器学习和深度学习。

二、知识图谱
知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。
知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。

三、自然语言处理
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。
机器翻译
机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。
语义理解
语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。
问答系统
问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。
自然语言处理面临四大挑战:
一是在词法、句法、语义、语用和语音等不同层面存在不确定性;
二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;
三是数据资源的不充分使其难以覆盖复杂的语言现象;
四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算

四、人机交互
人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。

五、计算机视觉
计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发http://www.rixia.cc展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。
目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:
一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;
二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;
三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。

六、生物特征识别
生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。
识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。
生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。

七、VR/AR
虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。
虚拟现实/增强现实从技术特征角度,按日夏养花网照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。
目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势
工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。
优点:
1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。
2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。
3、人工智能可以提高人类认识世界、适应世界的能力。
缺点:
1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。
2、人工智能如果不能合理利用,可能被坏人利用在犯罪上,那么人类将会陷入恐慌。
3、如果我们无法很好控制和利用人工智能,我们反而会被人工智能所控制与利用,那么人类将走向灭亡,世界也将变得慌乱。
随着人工智能技术的飞速发展,这项技术在很多领域的应用前景十分广阔, 将在生产、生活和科学研究的各个方面发挥积极的作用。 为此,人工智能已经成为业界乃至全社会重点关注的行业,人工智能专业必然成为热门专业,其就业前景好。

人工智能专业怎么样?

人工智能就业分为工程开发和学术研究两方面。 当前,人工智能市场主要分为以下几个领域:
基础服务,如数据源和计算平台

硬件产品,如工业机器人和服务机器人

智能服务,如智能客服和商业智能

技术能力,如图像识别和机器学习
人工智能在未来会得到广泛应用,前景自然是不错的 。

文章标签:

本文标题: 人工智能智能专业怎么样?
本文地址: http://www.rixia.cc/wenda/296493.html

上一篇:描写春夏秋冬的拟人句(生动一点)

下一篇:植物科学家为什么有意把不同时间开放的花中在一起呢?

相关推荐

推荐阅读

猜你喜欢

返回顶部