日夏养花网

您好,欢迎访问日夏养花网,我们的网址是:http://www.rixia.cc

想学人工智能,学什么专业好?学些什么课程?

2022-07-27 23:59:12 分类:养花问答 来源: 日夏养花网 作者: 网络整理 阅读:82

学习人工智能主要日夏养花网学什么内容?

学习人工智能需要学习三大块知识基础,其一是数学基础;其二是计算机基础;其三是人工智能平台基础,所以学习人工智能知识不仅知识量比较大,难度也相对比较高。

1、数学基础是学习人工智能技术的重要前提,人工智能领域的诸多研究方向都离不开数学知识,比如机器学习、计算机视觉、自然语言处理等。数学基础涉及到高等数学、线性代数、概率论等内容,可以说数学知识的掌握情况对于人工智能知识的学习会起到非常重要的作用。
2、计算机知识也是人工智能知识体系的重要组成部分,由于人工智能领域涉及到大量的计算机知识,所以长期以来,计算机专业也是培养人工智能人才的主要渠道之一。从当前的人工智能技术体系结构来看,主要涉及到操作系统、计算机网络、编程语言、算法设计、数据结构等计算机专业知识。
3、人工智能平台涉及到的内容非常多,不仅涉及到大量人工智能基础知识,同时也涉及到不同研发方向的相关知识,包括机器学习、计算机视觉、自动推理等等。

想了解更多有关人工智能的详情,推荐咨询达内教育。达内教育独创TTS8.0教学系统,达内OMO教学模式,全新升级,线上线下交互学习,满足学生多样化学习需求;同时,拥有经验丰富的讲师进行课程的讲授,对标企业人才标准,制定专业学习计划,囊括主流热点技术,运用理论知识+学习思维+实战操作,打造完整学习闭环;更有企业双选会,让学生就业更顺利。感兴趣的话点击此处,免费学习一下
1.基础数学知识:线性代数、概率论、统计学、图论;
2.基础计算机知识:操作系统、linux、网络、编译原理、数据结构、数据库;
3.编程语言基础:C/C++、Python、Java;
4.人工智能基础知识:ID3、C4.5、逻辑回归、SVM、分类器、等算法的特性、性质、和其他算法对比的区别等内容;
5.工具基础知识:opencv、matlab、caffe等。
我们知道,目前国家也相继出台了一些扶持人工智能发展的政策,人工智能正处于发展的红利期,所以越早学习就越有就业优势。人工智能火起来就是这一两年的事儿,因此不管是上市企业,还是一些中小型企业,对于人工智能人才的需求量都非常大。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。目前来看,现在学习人工智能是一个很好的时机!

人工智能专业主要学的是核心课程包括:数学、统计、计算机、自动化等,这些学科都属于人工智能专业的核心课程。

人工智能培训是按阶段来进行的,一般分为6个阶段
第一阶段是为期一个月学习python的核心编程,主要是python的语言基础和高级应用,帮助学员获得初步软件工程知识并树立模块化编程思想。
第二个阶段学习也是为期一个月,主要学习python全栈开发基础,通过本模块的学习,学生不仅能够掌握js在网络前端中的使用,还能够把js作为一门通用语言来运用。
第三个阶段是全栈开发项目实战,整个阶段需要1.5个月的时间学习,是占比比较长的一个阶段,时间更长、案例更多、 实用性更强,在这个阶段主要是做项目,学案例。
第四个阶段的学习是网络爬虫,学习三周,主要是掌握数据的爬取,学完这个阶段可选择的职位有网络爬虫工程师或者是数据采集工程师。
第五个阶段的学习内容是数据分析+人工智能,主要学习数据分析的相关知识以及人工智能,包括人工智能的机器学习、深度学习等。
.top域名给你解答:从事人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。
目前人工智能行业的就业方向主要分为搜索、图像处理、计算机视觉、模式识别和图像处理等,搜索方向如百度、谷歌、微软等,包括智能搜索、语音搜索、图片搜素、视频搜索等。图像处理如医学的图像处理,医疗设备、医疗器械都会涉及到图像处理和成像。

人工智能专业需要学哪些课程?

人工智能专业主要学的是核心课程包括:数学、统计、计算机、自动化等,这些学科都属于人工智能专业的核心课程。

.top域名给你解答:学习人工智能,需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。
需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。
需要掌握至少一门编程语言:毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少

人工智能都要学习什么课程?

人工智能学的课程主要包括:《人工智能、社会OGAeCtccR与人文》、《人工智能哲学基础与伦理》、《先进机器人控制》、《认知机器人》、《机器人规划与学习》、《仿生机器人》、《群体智能与自主系统》《无人驾驶技术与系统实现》《游戏设计与开发》《计算机图形学》《虚拟现实与增强现实》、《人工智能的现代方法I》《问题表达与求解》、《人工智能的现代方法II》。

材料补充:

人工智能专业以培养掌握人工智能理论与工程技术的专门人才为目标,学习机器学习的理论和方法、深度学习框架、工具与实践平台、自然语言处理技术、语音处理与识别技术、视觉智能处理技术、国际人工智能专业领域最前沿的理论方法,培养人工智能专业技能和素养,构建解决科研和实际工程问题的专业思维、专业方法和专业OGAeCtccR嗅觉。

2018年4月3日,中国高校人工智能人才国际培养计划启动仪式在北京大学举行。教育部国际合作与交流司司长许涛透露,教育部将进一步完善中国高校人工智能学科体系,在研究设立人工智能专业,推动人工智能一级学科建设。教育部在研究制定《高等学校引领人工智能创新行动计划》,通过科教融合、学科交叉、进一步提升高校人工智能科技创新能力和人才培养能力。

2018年4月8日,西安交通大学人工智能拔尖人才培养试验班宣告成立,将于2018年面向全国招生。每年计划招生40人左右,高考招生选拔15人左右,校内新生选拔15人左右,少年班再选拔10人左右。

2019年3月,教育部印发了《教育部关于公布2018年度普通高等学校本科专业备案和审批结果的通知》,经申报、公示、审核等程序,根据普通高等学校专业设置与教学指导委员会评议结果,并征求有关部门意见,确定新增审批专业名单。根据通知,全国共有35所高校获首批「人工智能」新专业建设资格。

2020年3月3日,教育部公布2019年度普通高等学校本科专业备案和审批结果,在新增备案本科专业名单中,“人工智能”专业新增最多。中国人民大学、复旦大学、北京邮电大学、中国农业大学、北京化工大学等180所高校都新增了“人工智能”专业。此外,“智能制造工程”“智能建造”“智能医学工程”“智能感知工程”等智能领域相关专业,也同样是高校的新增备案和
刚好来答一记。

本人本科刚好就是通信工程的。硕士搞的是NLP。也算是人工之智能方向。

首先,先来谈谈,通信工程转机器学习的好处。在本科阶段,学的课程很多,大部分分为

基础公共课(高数,现代,矩阵,概率,统计),专业基础课(信号处理,DSP),编程基础课(C,C++)

专业方向课(信息论,密码学,),计算机基础课(操作系统,计算机网络组成(tcp/ip协议的那一套))。

其次,基本上如果你本科认真学习以后,你就具备的了扎实的数理基础,和编程基础。

那么

数理基础决定了你在机器学习和人智能方向能的上限!

编程基础决定了你在机器学习和人智能方向能的下限!

重要事情说三遍!

重要事情说三遍!

重要事情说三遍!

因此,如果你是通信工程这种工科出身的,比计算机出身的优势要强很多!为什么,因为计算机

科班出身,大多数学不会学的那么深。如果没有参加过ACM,或者做过项目的话,动手能力也不会

比非科班出身的强多少。

最好的建议就是,考一个机器学习方向的研究生,在硕士阶段,做一两个相关的项目。并且在硕士阶段,不断关注这方面的最新研究动态。

然后在课余时间找一份相关实习,锻炼自己的动手能力,基本就ok。

另外,你说的人工只能方向太大了。应该缩小范围,例如NLP,ML。

定一个方向,每天积累。

下面是我的专栏,专注分享机器学习的知识。欢迎关注,里面有入门的方法!

如果觉得答案有帮助的话就点个赞吧!

钟少的自留地
现阶段人工智能是一个十分火热的事物,火热到什么地步呢?火热到很多高校都开始设立人工智能方面的专业和课程,并且加大力度培养人工智能人才,那么人工智能人才需要具备什么样的知识架构呢?人工智能人才需要学习什么知识呢?下面我们就给大家介绍一下这个内容。
首先,人工智能的学习需要高水平的人工智能人才,而对人工智能人才的要求就是需要数学基础好、计算/软件程序功底扎实、人工智能专业知识全面。首先,无论是在抽象建模还是模型算法分析设计环节,都需要依赖良好的数学基础,因为人工智能所面对的问题千变万化,这导致了其所涉及的数学工具种类多样。事实上,人工智能的核心领域,即机器学习是计算机科学中对数学基础要求最高的分支之一。所以人工智能对人才的有很多的要求。
其次就是复杂现实任务通常可以从多种角度进行抽象,而不同的抽象将导致巨大的差异。这就需要注意很多的问题,比如抽象出的问题是否可计算?从程序代码的角度是否易实现?从计算平台的角度是否便于高效处理?等等。要想回答一下这个问题就需要在算法分析、程序设计、计算系统方面具备扎实的基础。事实上,对一些现代大型人工智能程序而言,甚至连高维数组的存储顺序都需做到优化,这如果没有扎实的计算、软件程序功底显然是不行的。
最后,在我们解决现实的人工智能应用任务时,往往同时涉及多种人工智能专业知识,需有效进行融合发挥。因此,高水平的、能解决企业关键技术难题的人工智能人才,必须具备全面的人工智能专业知识。这些知识能够方便我们理解人工智能并能够朝着更好的方向发展。所以说,如果数学不好的同学那么就需要考虑考虑数据自己究竟是否适合这个专业。
在最后需要提醒大家的是,学习人工智能还是需要学习计算机、自动化、电子、软件等内容。人工智能所解决的问题都是充满不确定性的复杂问题,这就需要很高的处理事务的能力,如果我们不擅长处理事情,并且不适应随时随地出现的不确定性工作,那也不适合这个行业,就不建议大家学习这个专业,希望这篇文章能够给大家带来参考价值。

谱聚类算法建立在谱图理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解的优点。

学人工智能应该选什么专业?

人工智能技术关系到人工智能产品是否可以顺利应用到我们的生活场景中。在人工智能领域,它普遍包含了机器学习、知识图谱、自然语言处理、人机交互、计算机视觉、生物特征识别、AR/VR七个关键技术。

一、机器学习
机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。基于数据的机器学习是现代智能技术中的重要方法之一,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。根据学习模式、学习方法以及算法的不同,机器学习存在不同的分类方法。
根据学习模式将机器学习分类为监督学习、无监督学习和强化学习等。
根据学习方法可以将机器学习分为传统机器学习和深度学习。

二、知识图谱
知识图谱本质上是结构化的语义知识库,是一种由节点和边组成的图数据结构,以符号形式描述物理世界中的概念及其相互关系,其基本组成单位是“实体—关系—实体”三元组,以及实体及其相关“属性—值”对。不同实体之间通过关系相互联结,构成网状的知识结构。在知识图谱中,每个节点表示现实世界的“实体”,每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起而得到的一个关系网络,提供了从“关系”的角度去分析问题的能力。
知识图谱可用于反欺诈、不一致性验证、组团欺诈等公共安全保障领域,需要用到异常分析、静态分析、动态分析等数据挖掘方法。特别地,知识图谱在搜索引擎、可视化展示和精准营销方面有很大的优势,已成为业界的热门工具。但是,知识图谱的发展还有很大的挑战,如数据的噪声问题,即数据本身有错误或者数据存在冗余。随着知识图谱应用的不断深入,还有一系列关键技术需要突破。

三、自然语言处理
自然语言处理是计算机科学领域与人工智能领域中的一个重要方向,研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及的领域较多,主要包括机器翻译、机器阅读理解和问答系统等。
机器翻译
机器翻译技术是指利用计算机技术实现从一种自然语言到另外一种自然语言的翻译过程。基于统计的机器翻译方法突破了之前基于规则和实例翻译方法的局限性,翻译性能取得巨大提升。基于深度神经网络的机器翻译在日常口语等一些场景的成功应用已经显现出了巨大的潜力。随着上下文的语境表征和知识逻辑推理能力的发展,自然语言知识图谱不断扩充,机器翻译将会在多轮对话翻译及篇章翻译等领域取得更大进展。
语义理解
语义理解技术是指利用计算机技术实现对文本篇章的理解,并且回答与篇章相关问题的过程。语义理解更注重于对上下文的理解以及对答案精准程度的把控。随着MCTest数据集的发布,语义理解受到更多关注,取得了快速发展,相关数据集和对应的神经网络模型层出不穷。语义理解技术将在智能客服、产品自动问答等相关领域发挥重要作用,进一步提高问答与对话系统的精度。
问答系统
问答系统分为开放领域的对话系统和特定领域的问答系统。问答系统技术是指让计算机像人类一样用自然语言与人交流的技术。人们可以向问答系统提交用自然语言表达的问题,系统会返回关联性较高的答案。尽管问答系统目前已经有了不少应用产品出现,但大多是在实际信息服务系统和智能手机助手等领域中的应用,在问答系统鲁棒性方面仍然存在着问题和挑战。
自然语言处理面临四大挑战:
一是在词法、句法、语义、语用和语音等不同层面存在不确定性;
二是新的词汇、术语、语义和语法导致未知语言现象的不可预测性;
三是数据资源的不充分使其难以覆盖复杂的语言现象;
四是语义知识的模糊性和错综复杂的关联性难以用简单的数学模型描述,语义计算需要参数庞大的非线性计算

四、人机交互
人机交互主要研究人和计算机之间的信息交换,主要包括人到计算机和计算机到人的两部分信息交换,是人工智能领域的重要的外围技术。人机交互是与认知心理学、人机工程学、多媒体技术、虚拟现实技术等密切相关的综合学科。传统的人与计算机之间的信息交换主要依靠交互设备进行,主要包括键盘、鼠标、操纵杆、数据服装、眼动跟踪器、位置跟踪器、数据手套、压力笔等输入设备,以及打印机、绘图仪、显示器、头盔式显示器、音箱等输出设备。人机交互技术除了传统的基本交互和图形交互外,还包括语音交互、情感交互、体感交互及脑机交互等技术。

五、计算机视觉
计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。自动驾驶、机器人、智能医疗等领域均需要通过计算机视觉技术从视觉信号中提取并处理信息。近来随着深度学习的发展,预处理、特征提取与算法处理渐渐融合,形成端到端的人工智能算法技术。根据解决的问题,计算机视觉可分为计算成像学、图像理解、三维视觉、动态视觉和视频编解码五大类。
目前,计算机视觉技术发展迅速,已具备初步的产业规模。未来计算机视觉技术的发展主要面临以下挑战:
一是如何在不同的应用领域和其他技术更好的结合,计算机视觉在解决某些问题时可以广泛利用大数据,已经逐渐成熟并且可以超过人类,而在某些问题上却无法达到很高的精度;
二是如何降低计算机视觉算法的开发时间和人力成本,目前计算机视觉算法需要大量的数据与人工标注,需要较长的研发周期以达到应用领域所要求的精度与耗时;
三是如何加快新型算法的设计开发,随着新的成像硬件与人工智能芯片的出现,针对不同芯片与数据采集设备的计算机视觉算法的设计与开发也是挑战之一。

六、生物特征识别
生物特征识别技术是指通过个体生理特征或行为特征对个体身份进行识别认证的技术。从应用流程看,生物特征识别通常分为注册和识别两个阶段。注册阶段通过传感器对人体的生物表征信息进行采集,如利用图像传感器对指纹和人脸等光学信息、麦克风对说话声等声学信息进行采集,利用数据预处理以及特征提取技术对采集的数据进行处理,得到相应的特征进行存储。
识别过程采用与注册过程一致的信息采集方式对待识别人进行信息采OGAeCtccR集、数据预处理和特征提取,然后将提取的特征与存储的特征进行比对分析,完成识别。从应用任务看,生物特征识别一般分为辨认与确认两种任务,辨认是指从存储库中确定待识别人身份的过程,是一对多的问题;确认是指将待识别人信息与存储库中特定单人信息进行比对,确定身份的过程,是一对一的问题。
生物特征识别技术涉及的内容十分广泛,包括指纹、掌纹、人脸、虹膜、指静脉、声纹、步态等多种生物特征,其识别过程涉及到图像处理、计算机视觉、语音识别、机器学习等多项技术。目前生物特征识别作为重要的智能化身份认证技术,在金融、公共安全、教育、交通等领域得到广泛的应用。

七、VR/AR
虚拟现实(VR)/增强现实(AR)是以计算机为核心的新型视听技术。结合相关科学技术,在一定范围内生成与真实环境在视觉、听觉、触感等方面高度近似的数字化环境。用户借助必要的装备与数字化环境中的对象进行交互,相互影响,获得近似真实环境的感受和体验,通过显示设备、跟踪定位设备、触力觉交互设备、数据获取设备、专用芯片等实现。
虚拟现实/增强现实从技术特征角度,按照不同处理阶段,可以分为获取与建模技术、分析与利用技术、交换与分发技术、展示与交互技术以及技术标准与评价体系五个方面。获取与建模技术研究如何把物理世界或者人类的创意进行数字化和模型化,难点是三维物理世界的数字化和模型化技术;分析与利用技术重点研究对数字内容进行分析、理解、搜索和知识化方法,其难点是在于内容的语义表示和分析;交换与分发技术主要强调各种网络环境下大规模的数字化内容流通、转换、集成和面向不同终端http://www.rixia.cc用户的个性化服务等,其核心是开放的内容交换和版权管理技术;展示与交换技术重点研究符合人类习惯数字内容的各种显示技术及交互方法,以期提高人对复杂信息的认知能力,其难点在于建立自然和谐的人机交互环境;标准与评价体系重点研究虚拟现实/增强现实基础资源、内容编目、信源编码等的规范标准以及相应的评估技术。
目前虚拟现实/增强现实面临的挑战主要体现在智能获取、普适设备、自由交互和感知融合四个方面。在硬件平台与装置、核心芯片与器件、软件平台与工具、相关标准与规范等方面存在一系列科学技术问题。总体来说虚拟现实/增强现实呈现虚拟现实系统智能化、虚实环境对象无缝融合、自然交互全方位与舒适化的发展趋势
目前学界的人工智能和一般人(不从事人工智能行业的人)意义上的“智能”还相差甚远。主要应用有:推荐系统,计算机视觉,自然语言处理等。
目前我国的大学学科设置里面,最接近目前学术界意义的人工智能专业是控制工程与科学下的:模式识别与智能系统。但是也不那么绝对,人工智能这几年发展太快,作为本科生你起码要修好的基础有:高等数学(特别微分,求导),矩阵论(线性代数),概率,和英语(高水平的论文都是英文)
以上完成以后恭喜你点开人工智能基础天赋树。
然后你就可以愉快的找在网上找公开课上课了。推荐cs229(吴恩达教授,斯坦福大学)深度学习课程,台湾李宏毅老师机器学习课程(国语,对中国人比较友好)。
第二阶段完,这个阶段完了以后你应该对于编程和机器学习有一些基本认识了。然后你可以找找自己的兴趣。想走计算机视觉的去看看ted李飞飞的演讲,如何教计算机认识图片,想走自然语言处理的也可以找找相关素材,我是cv(计算机视觉)
走cv可以继续cs231(李飞飞 el,斯坦福)
走nlp(自然语言处理)的cs224(斯坦福课程)
第三阶段完

第四阶段就是看论文,敲代码,复现实验什么的了。估计3年过去了,你看见我这个回答的时候可能已经做出了自己的决定,给后来人一点微小的贡献把。
工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。
优点:
1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。
2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。
3、人工智能可以提高人类认识世界、适应世界的能力。
缺点:
1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。
2、人工智能如果不能合理利用,可能被坏人利用在犯罪上,那么人类将会陷入恐慌。
3、如果我们无法很好控制和利用人工智能,我们反而会被人工智能所控制与利用,那么人类将走向灭亡,世界也将变得慌乱。
纯理论性,以强人工智能或者神经网络为研究方向,这样的话,本科可以选择神经科学,也可以选修心理学、哲学、计算机科学。
学人工智能的话可以选择数据库、智能家居、云计算等等互联网方向的专业。

文章标签:

本文标题: 想学人工智能,学什么专业好?学些什么课程?
本文地址: http://www.rixia.cc/wenda/296059.html

上一篇:王大爷家有一块小麦地前年产小麦3840千克,去年选用了新品种,比前年增产了二成,增产了多少?

下一篇:我国每年的植树节定在几月几日?这时正是什么季节?树木发芽了吗?这时候植树造林有什么好处?

相关推荐

推荐阅读

猜你喜欢

返回顶部