日夏养花网

您好,欢迎访问日夏养花网,我们的网址是:http://www.rixia.cc

急求高一数学建模论文题材

2021-07-23 03:57:02 分类:养花问答 来源: 日夏养花网 作者: 网络整理 阅读:127

数学建模论文的素材

最近要参加数学竞赛,学要写一篇数学建模论文,高一年级写一篇什么题材的比较好呢?
数学建模论文范文--利用数学建模解数学应用题
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。 强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式

应用题 审题 题设条件代入数学模型 求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型 实际问题
一次函数 成本、利润、销售收入等
二次函数 优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等
三角函数 测量、交流量、力学问题等

3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

加强高中数学建模教学培养学生的创新能力

摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。
关键词:创新能力;数学建模;研究性学习。
《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:
(1)学会提出问题和明确探究方向;
(2)体验数学活动的过程;
(3)培养创新精神和应用能力。
其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。
数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。
一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。
教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。
如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?
这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。
这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。

急求数学建模论文的范文

数学建模 rn数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。 rnrn数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。rn数学建模是使用数学模型解决实际问题。rn数学模型 rn数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。 rnrn简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。
你邮箱多少?
要全国大学生数学建模的范文,还是美国大学生数学建模的范文(全英文)?
我都参加过,可以把我收集的范文传给你。
数学建模
数学建模是利用数学www.rixia.cc方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。

数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一。
数学建模是使用数学模型解决实际问题。
数学模型
数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。

简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。

一篇高中生数学建模论文

是高一水平的 急啊dikqnGSj
如何撰写数学建模论文兼谈数学建模竞赛答卷要求当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文.撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的.事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题.首先要明确撰写论文的目的.数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中.当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的.其次,要注意论文的条理性.下面就论文的各部门应当注意的地方具体地来作一些分析.(一)问题提出和假设的合理性在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉.列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题.历届数学建模竞赛的试题可以看作是情景说明的范例.对情景的说明,不可能也不必要提供问题的每个细节.由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣.所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系.这部分内容就应该在论文的“问题的假设”部分中体现.由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:(1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解.(2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考.(3)假设应验证其合理性.假设的合理性可以从分析问题过程中得出,例如从问题的性质出发作出合乎常识的假设;或者由观察所给数据的图象,得到变量的函数形式;也可以参考其他资料由类推得到.对于后者应指出参考文献的相关内容.(二)模型的建立在作出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件.论文中用到的各种数学符号,必须在第一次出现时加以说明.总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据.(三)模型的计算与分析把实际问题归结为一定的数学问题后,就要求解或进行分析.在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出).还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果.基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论.有些模型(例如非线性微分方程)需要作稳定性或其他定性分析.这时应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论.在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来.结论使用时要注意的问题,可以用助记的形式列出.定理和命题必须写清结论成立的条件.(三)模型的讨论对所作的数学模型,可以作多方面的讨论.例如可以就不同的情景,探索模型将如何变化.或可以根据实际情况,改变文章一开始所作的某些假设,指出由此数学模型的变化.还可以用不同的数值方法进行计算,并比较所得的结果.有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化.通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围.除正文外,论文和竞赛答卷都要求写出摘要.我们不要忽视摘要的写作.因为它会给读者和评卷人第一印象.摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意.语言是构成论文的基本元素.数学建模论文的语言与其他科学论文的语言一样,要求达意、干练.不要把一句句子写得太长,使人不甚卒读.语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句.在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态.最后,论文的书写和附图也都很重要.附图中的图形应有明确的说明,字迹力求端正.有条件的,最好能把文章用计算机打印出来.如何写好数学建模竞赛答卷一、写好数模答卷的重要性1.评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据.2.答卷是竞赛活动的成绩结晶的书面形式.3.写好答卷的训练,是科技写作的一种基本训练.二、答卷的基本内容,需要重视的问题1评阅原则:假设的合理性,建模的创造性,结果的合理性,表述的清晰程度.2答卷的文章结构0.摘要1.问题的叙述,问题的分析,背景的分析等,略2.模型的假设,符号说明(表)3.模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)4.模型的求解▲计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;▲引用或建立必要的数学命题和定理;▲求解方案及流程5.结果表示、分析与检验,误差分析,模型检验……6.模型评价,特点,优缺点,改进方法,推广…….7.参考文献8.附录计算框图详细图表……3要重视的问题0.摘要.包括:a.模型的数学归类(在数学上属于什么类型)b.建模的思想(思路)c.算法思想(求解思路)d.建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验…….)e.主要结果(数值结果,结论)(回答题目所问的全部“问题”)▲表述:准确、简明、条理清晰、合乎语法、字体工整漂亮;打印最好,但要求符合文章格式.务必认真校对.1.问题重述.略2.模型假设跟据全国组委会确定的评阅原则,基本假设的合理性很重要.(1)根据题目中条件作出假设(2)根据题目中要求作出假设关键性假设不能缺;假设要切合题意3.模型的建立(1)基本模型:1)首先要有数学模型:数学公式、方案等2)基本模型,要求完整,正确,简明(2)简化模型1)要明确说明:简化思想,依据2)简化后模型,尽可能完整给出(3)模型要实用,有效,以解决问题有效为原则.数学建模面临的、要解决的是实际问题,不追求数学上:高(级)、深(刻)、难(度大).能用初等方法解决的、就不用高级方法;能用简单方法解决的,就不用复杂方法;能用被人看懂、理解的方法,就不用只能少数人看懂、理解的方法.(4)鼓励创新,但要切实,不要离题搞标新立异,数模创新可出现在▲建模中,模型本身,简化的好方法、好策略等,▲模型求解中▲结果表示、分析、检验,模型检验▲推广部分(5)在问题分析推导过程中,需要注意的问题:分析:中肯、确切术语:专业、内行原理、依据:正确、明确,表述:简明,关键步骤要列出切忌:外行话,专业术语不明确,表述混乱,冗长.4.模型求解(1)需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密.(2)需要说明计算方法或算法的原理、思想、依据、步骤.若采用现有软件,说明采用此软件的理由,软件名称(3)计算过程,中间结果可要可不要的,不要列出.(4)设法算出合理的数值结果.5.结果分析、检验;模型检验及模型修正;结果表示(1)最终数值结果的正确性或合理性是第一位的;(2)对数值结果或模拟结果进行必要的检验.结果不正确、不合理、或误差大时,分析原因,对算法、计算方法、或模型进行修正、改进;(3)题目中要求回答的问题,数值结果,结论,须一一列出;(4)列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;(5)结果表示:要集中,一目了然,直观,便于比较分析▲数值结果表示:精心设计表格;可能的话,用图形图表形式▲求解方案,用图示更好(6)必要时对问题解答,作定性或规律性的讨论.最后结论要明确.6.模型评价优点突出,缺点不回避.改变原题要求,重新建模可在此做.推广或改进方向时,不要玩弄新数学术语.7.参考文献8.附录详细的结果,详细的数据表格,可在此列出.但不要错,错的宁可不列.主要结果数据,应在正文中列出,不怕重复.检查答卷的主要三点,把三关:模型的正确性、合理性、创新性;结果的正确性、合理性;文字表述清晰,分析精辟,摘要精彩.三、对分工执笔的同学的要求四、关于写答卷前的思考和工作规划答卷需要回答哪几个问题――建模需要解决哪几个问题;问题以怎样的方式回答――结果以怎样的形式表示;每个问题要列出哪些关键数据――建模要计算哪些关键数据;每个量,列出一组还是多组数――要计算一组还是多组数……五、答卷要求的原理准确――科学性实用――实际问题要求.建模理念:1.应用意识:要解决实际问题,结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题.2.数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决.3.创新意识:建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新
数学建模论文范文--利用数学建模解数学应用题
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。 强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。

一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要日夏养花网通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式

应用题 审题 题设条件代入数学模型 求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型 实际问题
一次函数 成本、利润、销售收入等
二次函数 优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等
三角函数 测量、交流量、力学问题等

3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

加强高中数学建模教学培养学生的创新能力

摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。
关键词:创新能力;数学建模;研究性学习。
《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:
(1)学会提出问题和明确探究方向;
(2)体验数学活动的过程;
(3)培养创新精神和应用能力。
其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。
数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。
一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。
教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。
如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?
这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。
这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。
不好意思,建模在高中水平上还真是涉及很少,建模问题也是难道很多大学生的问题。而且建模要求的独立思维,所以希望你最好自己写。能在网上查到的都不是高中能做出来的。大学学的数学,我建模都不敢说会做。如有帮助,希望采纳,有问题继续追问
多学习一下国赛或者美赛的优秀论文,具体论文的格式可以仿照优秀论文,另外在文章中应该要有自己的亮点所在,比如新颖的算法或者模型,可以增色不少。

急求数学建模论文模版,谢谢

  我去年就参加了全国大学生数学建模竞赛,这些资料是我去年暑假整理的论文模板,如果资料不足的话,再联系我………………

  全国大学生数学建模竞赛论文格式规范

   本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。
   论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。
   论文第一页为承诺书,具体内容和格式见本规范第二页。
   论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。
   论文题www.rixia.cc目和摘要写在论文第三页上,从第四页开始是论文正文。
   论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。
   论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。
   论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。
   提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。
   引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:
  [编号] 作者,书名,出版地:出版社,出版年。
  参考文献中期刊杂志论文的表述方式为:
  [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。
  参考文献中网上资源的表述方式为:
  [编号] 作者,资源标题,网址,访问时间(年月日)。
   在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。
   本规范的解释权属于全国大学生数学建模竞赛组委会。

  [注]
  赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。

  全国大学生数学建模竞赛组委会
  2009年3月16日修订

  数学建模论文一般结构
  1摘要 (单独成页)
  主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)
  作用:了解文件重要性,对文件有大致认识
  最佳页副:页面2/3。
  2、问题重述和分析
  3、问题假设
  假设是建模的基础,具有导向性,容易被忽视。常犯错误有缺少假设或假设不切实际。对一些关键性的或对结果有重大影响的条件或参数应该在假设中明确约定。
  作假设的两个原则:
  ① 简化原则:抓住主要矛盾,舍弃次要因素,方便 数学处理。
  ② 贴近原则:贴近实际。
  以上两个原则是相互制约的,要掌握好“度”。通常是先建模后假设。

  4、符号说明 (3.4可以合并)
  5、模型建立与求解(重要程度 :60%以上)
  6、模型检验(误差一般指均方误差)
  7、结果分析 (6.7可以合并)
  8、模型的进一步讨论 或 模型的推广
  9、模型优缺点
  10、参考文件
  11、附件(结果千万不能放在附件中)
  论文最佳页面数:15-21页

   论文结构一
  题目
  摘要
  1.问题的重述
  2.合理假设
  3.符号约定
  4.问题的分析
  5.模型的建立与求解
  6.模型的评价与推广
  1、误差分析
  2、模型的改进与推广
  对XXXX切实可行的建议和意见:
  1.……
  2.……
  ……
  7.参考文献
  8.附录

   数学建模论文一般格式
   摘要
  (主要理解、主要方法、主要结果、主要特点)
  或(背景、目标、方法、结果、结论、建议)
   问题重述与分析
   问题假设
   符号说明
   模型建立与求解
   模型检验
   结果分析
   模型的进一步讨论
   模型优缺点

  优秀论文要点:
  1. 语言精练、有逻辑性、书写有条理
 http://www.rixia.cc 2. 文字与图形相结合,使内容直观、清晰、明了、容易理解
  3. 切忌只用文字进行说明,多运用图形或表格,并对图形或表格做精简的分析,毕竟文字性东西太过于枯燥、乏味,没人有耐性去看那么冗长的文章
  4. 对论文中所引用或用到的知识、软件要清晰地予以说明。
  5. 在附录中附上论文所必须要的一些数据(图形或表格),并将论文中所编写的程序附上去

  各步骤解释
  摘要:主要理解 、主要方法、 主要结果、 主要特点 (不要图、不要表)
  作用:了解文件重要性,对文件有大致认识
  最佳页副:页面2/3
  问题重述与分析: 一向导、对题意的理解、

   建模的创造性
  创造性是灵魂,文章要有闪光点。

  好创意、好想法应当既在人意料之外,又在人
  意料之中。

  新颖性(独特性)与合理性皆备。
  误区之一:数学用得越高深,越有创造性。
  解决问题是第一原则,最合适的方法是最好的方法。
  误区之二:创造性主要体现在建模与求解上。
  创造性可以体现在建模的各个环节上,并且可以有多种表现形式。
  误区之三:好创意来自于灵感,可遇不可求。
  好创意来自于对数学方法的掌握程度与对问题理解的透彻程度。

   表达的清晰性
  好的文章 = 好的内容 + 好的表达
   替读者着想。该交代的要交代,如对题目的理解,关键指标或参数的引入,建模的思路,结果的分析等。
   写好摘要,包括:建模主要方法、主要结果,模型主要优点。
   专人负责写作,及早动手。考虑写作的过程也是构思框架、理清思路的过程,有利于从总体上把握建模的思路,反过来促进建模。
   适当采用图表,增加可读性。

文章标签:

本文标题: 急求高一数学建模论文题材
本文地址: http://www.rixia.cc/wenda/145208.html

上一篇:家中梳妆台上出现白色小点点的虫子,看着像灰尘,仔细看还会动,这个是什么虫子,怎么去除,有什么危害?

下一篇:小乌龟怎么交配?怎么产蛋?

相关推荐

推荐阅读

猜你喜欢

返回顶部